¿ÞÂÊ ¸Þ´º ŸÀÌƲ À̹ÌÁö
¿¬±¸µ¿Çâ

Home < ¿­¸°¸¶´ç < ¿¬±¸µ¿Çâ

       ¼¼Æ÷ ¿Ü¿¡¼­ÀÇ ´ë»ç°æ·Î À籸¼º ¹× ÀÌÀÇ È°¿ë
       kimsg7596@kaist.ac.kr        
       ±èµ¿¸í        2014.05.30 14:53        14468
´Ù¿î·Îµå : ¼¼Æ÷¿Ü¿¡¼­ÀÇ ´ë»ç°æ·Î À籸¼º ¹× ÀÌÀÇÈ°¿ë_±èµ¿¸í_±³¼ö_.pdf(296 Kb)
 

¼¼Æ÷ ¿Ü¿¡¼­ÀÇ ´ë»ç°æ·Î À籸¼º ¹× ÀÌÀÇ È°¿ë

 

 


Ãæ³²´ëÇб³ ±èµ¿¸í ±³¼ö

 

1. °³¿ä
 È¿¼Ò¿Í ¼¼Æ÷ µîÀÇ »ýÃ˸Ŵ ȭÇÐÃ˸ſ¡ ºñÇØ ¿ÂÈ­ÇÑ Á¶°Ç¿¡¼­ ³ôÀº ¼±ÅüºÀ¸·Î È­ÇйÝÀÀÀ» Ã˸ÅÇÏ´Â ÀåÁ¡À» °¡Áö°í ÀÖ´Ù. »ýÃ˸ſ¡ ÀÇÇØ ÁøÇàµÇ´Â »ý¹°Àüȯ°øÁ¤Àº ³ÐÀº ¹üÀ§ÀÇ °øÁ¤ º¹À⼺°ú »ê¹° ºÎ°¡°¡Ä¡¸¦ °¡Áø´Ù. ´Ü¹éÁú ÀǾà, Ç×ü, ±¤ÇÐÀ̼ºÁúü, ÅüÖ, Ç×»ýÁ¦ µîÀº kg ´ç °¡°ÝÀÌ ¼öõ¿¡¼­ ¼ö½Ê¾ï ´Þ·¯¿¡ À̸£´Â ¹Ý¸é, ¿¡Åº¿Ã, ¼ö¼Ò, Á¥»ê µî°ú °°Àº Á¦Ç°µéÀÇ °¡°ÝÀº kg ¼ö ´Þ·¯ Á¤µµÀÌ´Ù (Lynd et al, 1999). ¹ÙÀÌ¿À ¿¬·á¿Í ¹ÙÀÌ¿À ÄɹÌÄÃÀ» »ý»êÇϱâ À§ÇÑ È­ÀÌÆ® ¹ÙÀÌ¿ÀÅØ ±â¼úÀº °í°¡ÀÇ ÀǾàÇ°À» »ý»êÇϱâ À§ÇÑ ·¹µå ¹ÙÀÌ¿ÀÅØ ±â¼ú¿¡ ºñÇØ °æÁ¦Àû µ¿ÀÎ, ¿ø·áÀÇ °¡°Ý, °øÁ¤ºñ¿ë, ÀÚº»ÅõÀÚ±Ô¸ð µî¿¡¼­ ¸¹Àº Â÷ÀÌÁ¡À» º¸ÀδÙ. Áï, ´ÜÀ§ °¡°ÝÀÌ ³·Àº ¹ÙÀÌ¿ÀÄ¿¸Ó´õƼ Á¦Ç°Àº ź¼öÈ­¹° µîÀÇ ¿ø·á¹°ÁúÀÌ Â÷ÁöÇÏ´Â °¡°Ý ºñÁßÀÌ 30~70%¿¡ À̸£´Â ¹Ý¸é, ¹ÙÀÌ¿ÀÀǾàÇ°ÀÇ °æ¿ì ¿ø·áºñ¿ëÀº Å©°Ô °í·ÁµÇÁö ¾Ê´Â´Ù (Lynd et al.,1999).
»ý¹°Àüȯ±â¼úÀº ¹ÝÀÀ ¹× Ã˸ÅÀÇ º¹À⼺¿¡ µû¶ó ´ÜÀÏÈ¿¼Ò¹ÝÀÀ, ´ÙÈ¿¼Ò¹ÝÀÀ, ¹«¼¼Æ÷¹ÝÀÀ, Àü¼¼Æ÷¹ÝÀÀÀÇ ³× °¡Áö·Î ±¸ºÐµÉ ¼ö ÀÖ´Ù. ´ÜÀÏÈ¿¼Ò ¹ÝÀÀÀº ´Ü¼øÇÑ È­ÇйÝÀÀÀÇ ÁøÇàÀ» À§ÇØ »ç¿ëµÉ ¼ö ÀÖÀ¸¸ç ÇöÀç ´ë·« 4,800 ¿©Á¾ÀÇ È¿¼Ò°¡ ºê·»´Ù µ¥ÀÌÅͺ£À̽º¿¡ µî·ÏµÇ¾î ÀÖ´Ù (Chang et al., 2009). ´ÜÀÏ È¿¼Ò ¹ÝÀÀÀº glucose isomerase¸¦ ÀÌ¿ëÇÑ °ú´çÀÇ »ý»ê, amidase¸¦ ÀÌ¿ëÇÑ º£Å¸¶ôŽ°è Ç×»ýÁ¦ÀÇ »ý»ê µî°ú °°Àº ºÐ¾ß¿¡¼­ »ê¾÷ÀûÀÎ ±Ô¸ð·Î ÀÌ¿ëµÇ°í ÀÖ´Ù (Bhosale et al., 1996; Vasic-Racki, 2006). ºñ±³Àû º¹ÀâÇÑ ´Ù´Ü°è ¹ÝÀÀÀÇ °æ¿ì´Â º¹¼öÀÇ È¿¼ÒÀÇ one-pot ¹ÝÀÀÀ» ÀÌ¿ëÇÒ ¼ö ÀÖ´Ù (Vasic-Racki, 2006). ¿¹¸¦ µé¾î, endoglucanase, cellobiohydrolase, beta-glucosidaseÀÇ µ¿½Ã»ç¿ëÀ» ÅëÇÑ ¼¿·ê·Î¿À½ºÀÇ ºÐÇØ (Zhang and Lynd, 2004), NAD(P)H Àç»ýÀ» ÅëÇÑ ±¤ÇÐÀ̼ºÁú ¾ËÄÝÀÇ »ý»ê (Hummel, 1999; Wichmann and Vasic-Racki, 2005), °íºÐÀÚüÀÇ »ý»ê (Meyer et al., 2007; Shaeri et al., 2008) µîÀÌ º¸°íµÈ ¹Ù ÀÖ´Ù. º¹¼öÀÇ È¿¼Ò¸¦ »ç¿ëÇÑ one pot ¹ÝÀÀÀº ´ÜÀ§°øÁ¤ÀÇ Àý°¨, ¹ÝÀÀºÎÇÇÀÇ ÃÖ¼ÒÈ­, ³ôÀº »ý»ê¼öÀ², ªÀº °øÁ¤»çÀÌŬ, Æó±â¹°ÀÇ ÃÖ¼ÒÈ­ µî°ú °°Àº ÀåÁ¡À» °¡Áö°í ÀÖ´Ù. ¶ÇÇÑ ´ÜÀ§¹ÝÀÀµéÀÇ °áÇÕÀ» ÅëÇØ ¿­¿ªÇÐÀûÀ¸·Î ºÒ¸®ÇÑ ¹ÝÀÀÀÇ »ê¹°À» °¡´ÉÇÏ°Ô ÇÒ ¼öµµ ÀÖ´Ù (Chi et al., 2008; Daines et al., 2004). ÀÌ¹Ì ¼ö õ³âÀüºÎÅÍ ÀÚ¿¬»óÀÇ ¹Ì»ý¹°ÀÌ »ç¿ëÇÏ¿© ¿¡Åº¿Ã°ú Ä¡Áî»ý»ê °øÁ¤¿¡ Àû¿ëµÈ ¹Ù¿Í °°ÀÌ, º¹ÀâÇÑ »ýÀüȯ ¹ÝÀÀÀº ÀÚ¿¬ÀûÀΠȤÀº À¯ÀüÀûÀ¸·Î Á¶ÀÛµÈ »ý¼¼Æ÷¸¦ ÀÌ¿ëÇÏ¿© ½ÃµµµÉ ¼ö ÀÖ´Ù. À¯ÀüÀÚ Á¶ÀÛ±â¼úÀÇ ¹ßÀü¿¡ ÈûÀÔ¾î ¿¡Åº¿Ã (Shaw et al., 2008), ºÎź¿Ã (Atsumi et al., 2008), Áö¹æ»ê¿¡½ºÅ׸£ (Kalscheuer et al., 2006), ¼ö¼Ò (Logan, 2004; Maeda et al., 2008) µîÀÇ Àú°¡È­Çй°Áú¿¡¼­ Ç×»ýÁ¦, ºñŸ¹Î, ¹é½Å, È¿¼Ò, Ç×»ýÁ¦, ´çÈ­´Ü¹éÁú, ¶óÀÌÄÚÆæ, ¾Æ¸£Å׹̽ôÑ, ÅÃ¼Ö µîÀÇ °í°¡»ê¹°¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¹°ÁúÀÇ »ý»ê¼º Çâ»óÀ» À§ÇÑ ¹Ì»ý¹°ÀÇ ¿£Áö´Ï¾î¸µÀÌ ½ÃµµµÇ¾î ¿Ô´Ù (Chang and Keasling, 2006; Demain, 2000; Hamilton et al., 2003; Klein-Marcuschamer et al., 2007; Maynard and Georgiou, 2000; Zhong, 2001). ±×·¯³ª, Àü ¼¼Æ÷ ±â¹ÝÀÇ »ý¹°Àüȯ °øÁ¤Àº ¼¼Æ÷ÀÇ ¿£Áö´Ï¾î¸µÀ» À§ÇØ ¸¹Àº ½Ã°£°ú ³ë·ÂÀÌ ¿ä±¸µÇ¸ç ¼¼Æ÷ ¼ºÀå°ú À¯Áö¸¦ À§ÇÑ ¹°Áú°ú ¿¡³ÊÁöÀÇ ¼Ò¸ð, »ê¹° ÃàÀû¿¡ µû¸¥ ¼¼Æ÷µ¶¼º µîÀÇ ÇѰ踦 °¡Áú ¼ö ÀÖ´Ù. ¶ÇÇÑ ¼¼Æ÷ ³»¿¡¼­ÀÇ ´ë»ç»ê¹° »ý»ê ½Ã ´ë»ç°úÁ¤ÀÇ °¢ ´Ü°èÀÇ È¿¼ÒµéÀÌ Àü»ç, mRNA ¾ÈÁ¤¼º, ¹ø¿ª´Ü°èÀÇ Á¶ÀýÀ» ¹Þ°Ô µÈ´Ù. ÀÌ °°Àº ¹®Á¦Á¡µéÀº ¼¼Æ÷ÀÇ ´ë»ç°úÁ¤¿¡ ÀÛ¿ëÇÏ´Â È¿¼Ò, Á¶È¿¼Ò, ÀÛ¿ë¹°ÁúµéÀ» ¼¼Æ÷ ¿Ü¿¡¼­ À籸¼ºÇÏ¿© ÀΰøÀûÀÎ ´ë»ç³×Æ®¿öÅ©¸¦ ±¸¼ºÇÔÀ¸·Î½á ±Øº¹ µÉ ¼ö ÀÖÀ» °ÍÀÌ´Ù. 
 

±×¸² 1. in vitro ½Ã½ºÅÛ°ú in vivo ½Ã½ºÅÛÀÇ »ó´ëÀû º¹À⼺ (Ãâó: Curr Opin Biotechnol)


±×¸² 1¿¡¼­ º¸ÀÌ´Â ¹Ù¿Í °°ÀÌ, È¿¼ÒµéÀÇ À籸¼ºÀ» ÅëÇÑ ¸ñÀû ´ë»ç»ê¹°ÀÇ »ý»êÀº ¼¼Æ÷¸¦ »ç¿ëÇÏ´Â °æ¿ì¿¡ ºñÇØ º¹À⼺À» Å©°Ô ÁÙÀÏ ¼ö ÀÖ°í, ¼¼Æ÷ ÀÚüÀÇ ´ë»ç°æ·ÎÀÇ º¹À⼺À¸·Î ÀÎÇÑ ´ë»ç°æ·Î º¯°æÀÇ ¾î·Á¿ò°ú Á¤·®È­, ¼öÀ²ÀÇ ÇÑ°è µîÀÇ ¹®Á¦Á¡µéÀ» °¨¼Ò½Ãų ¼ö ÀÖ´Ù. ¿¹¸¦ µé¾î ±×¸²¿¡ º¸ÀÌ´Â ¹Ù¿Í °°ÀÌ ºñ±³Àû ´Ü¼øÇÑ 6´Ü°èÀÇ ´ë»ç°æ·Î¸¦ ÅëÇÑ »ê¹°ÀÇ »ý»êÀÇ °æ¿ì, »ý¼¼Æ÷ÀÇ À¯ÀüÀÚ Á¶ÀÛÀ» ÅëÇÑ ´ë»ç°æ·ÎÀÇ º¯°æ ¹× Ž»öÀ» À§Çؼ­´Â 56 = 625°¡Áö¿¡ À̸£´Â Á¶ÇÕÀÌ Å×½ºÆ®µÇ¾î¾ß ÇÏ´Â ¹Ý¸é °³º° È¿¼ÒÀÇ Á¶ÇÕÀ» ÅëÇÑ ´ë»ç°æ·ÎÀÇ À籸ÃàÀ» À§Çؼ­´Â 30°¡ÁöÀÇ Á¶ÇÕ¸¸ÀÌ °ËÁõµÇ¸é µÈ´Ù.
´Ù Á¾ÀÇ È¿¼Ò¸¦ Æ÷ÇÔÇÑ ¹«¼¼Æ÷ »ý¹°ÀüȯÀÇ °³³äÀº »õ·Î¿î °³³äÀº ¾Æ´Ï¾î¼­ ³ëº§»ó ¼ö»óÀÚÀÎ Eduard Buchner´Â ÀÌ¹Ì 1897³â¿¡ È¿¸ð¼¼Æ÷ÀÇ Æļâ¾×À» »ç¿ëÇÑ ¹«¼¼Æ÷ ¹ßÈ¿¿¡ °üÇÑ °á°ú¸¦ ¹ßÇ¥ÇÑ ¹Ù ÀÖ°í, ´Ü¹éÁú ÇÕ¼ºÀ» À§ÇÑ ¹«¼¼Æ÷ Àüȯ ½Ã½ºÅÛÀº ¼¼Æ÷µ¶¼º µîÀÇ ¹®Á¦·Î ¼¼Æ÷ ³» ¹ßÇöÀÌ ¾î·Á¿î ÀçÁ¶ÇÕ ´Ü¹éÁúµéÀÇ »ý»êÀ» Áß½ÉÀ¸·Î ±× Àû¿ëÀÌ È®´ëµÇ¾î °¡°í ÀÖ´Ù (Boyer et al., 2008; Hirao et al., 2002; Noren et al., 1989).
Design, extraction, standardizationÀÇ °øÇÐÀû ¿ø¸®¸¦ »ý¹°½Ã½ºÅÛ¿¡ Àû¿ëÇÏ°íÀÚ ÇÏ´Â ÇÕ¼º»ý¹°ÇÐÀº Å©°Ô in vivo ÇÕ¼º»ý¹°Çаú in vitro ÇÕ¼º»ý¹°ÇÐÀ¸·Î ´ëº° µÉ ¼ö ÀÖÀ» °ÍÀÌ´Ù (Foster and Church, 2007; Meyer et al., 2007). ÇöÀç±îÁöÀÇ ÇÕ¼º»ý¹°ÇÐ ¿¬±¸´Â ´ëºÎºÐ in vivo½Ã½ºÅÛÀ» Áß½ÉÀ¸·Î ÀÌ·ç¾îÁ® ¿ÔÀ¸³ª, in vitro½Ã½ºÅÛÀ» Àû¿ëÇÑ ÇÕ¼º»ý¹°ÇÐÀº ¼¼Æ÷ÀÇ »ýÁ¸¼º È®º¸, º¹À⼺, ¼¼Æ÷È°¼ºÀ¯Áö, ¼¼Æ÷¸·ÀÇ Á¸Àçµî°ú °°Àº Á¦ÇÑ¿ä°ÇÀ¸·ÎºÎÅÍ ÀÚÀ¯·Ó°Ô »ý¹°½Ã½ºÅÛÀ» ¼³°èÇÏ°í ¿£Áö´Ï¾î¸µÇÒ ¼ö ÀÖ´Ù´Â ¸íÈ®ÇÑ ÀåÁ¡À» °¡Áö°í ÀÖ´Ù (Benner and Sismour, 2005; Endy, 2005).
ÀÌ º¸°í¼­¿¡¼­´Â ´ë»ç°æ·ÎÀÇ ¼¼Æ÷ ¿Ü À籸ÃàÀ» ÅëÇØ º¸´Ù ´Ù¾çÇÑ À¯¿ë ´ë»ç»ê¹°À» »ý»êÇÏ°íÀÚ ½ÃµµµÇ°í ÀÖ´Â ÃÖ±ÙÀÇ ¿¬±¸µ¿Çâ¿¡ ´ëÇÏ¿© ¼Ò°íÇÏ°íÀÚ ÇÑ´Ù.


2. ¹ÙÀÌ¿À ¿¬·á


Åë»óÀûÀ¸·Î ¹Ì»ý¹°ÀÇ ¹ßÈ¿¸¦ ÅëÇØ »ý»êµÇ´Â ¿¡Åº¿ÃÀº È¿¸ðÀÇ ¼¼Æ÷ Æļâ¾×À» ÅëÇؼ­µµ »ý»êµÉ ¼ö ÀÖÀ½ÀÌ Buchner¿¡ ÀÇÇØ ÀÔÁõµÈ ¹Ù ÀÖ´Ù (Buchner, 1897). ±×·¯³ª, ÇØ´çÀÛ¿ë¿¡¼­ÀÇ ATPÀÇ ÃàÀûÀº °¡ÇØÁø Æ÷µµ´çÀº ¿ÏÀüÈ÷ ¿¡Åº¿Ã·Î ÀüȯµÇÁö ¸øÇÏ°Ô µÈ´Ù (Welch and Scopes, 1985).


C6H12O6(aq) + 2ADP +2Pi ¡æ 2C2H6O(aq) + 2CO2(g) + 2ATP


Welch and Scopes´Â À籸ÃàµÈ È¿¸ðÀÇ ÇØ´ç´ë»ç°æ·Î¿¡ ATPase¸¦ ÷°¡ÇÏ¿© Áö¼ÓÀûÀ¸·Î ADP¸¦ °ø±ÞÇÔÀ¸·Î½á 180g/LÀÇ Æ÷µµ´çÀ¸·ÎºÎÅÍ 90g/LÀÇ ¿¡Åº¿ÃÀ» »ý»êÇÏ¿© ÀÌ·ÐÀû ¼öÀ²ÀÇ 99%¿¡ À̸£´Â ÀüȯÀ²À» ´Þ¼ºÇÒ ¼ö ÀÖ¾ú´Ù. ¶ÇÇÑ, ATPase´ë½Å arsenate¸¦ ÷°¡ÇÔÀ¸·Î½áµµ À¯»çÇÑ ¼öÀ²ÀÇ ÀüȯÀ²¿¡ µµ´ÞÇÒ ¼ö ÀÖÀ½À» º¸¿´´Ù (Nelson and Cox, 2008). ÀÌ´Â arsentate°¡ phosphate¸¦ ´ë½ÅÇÏ¿© ADP¿¡ °áÇÕÇÒ ¼ö ÀÖÁö¸¸ ÀÚ¿¬ÀûÀ¸·Î °¡¼öºÐÇصǴ ¼ºÁúÀ» ÀÌ¿ëÇÑ °ÍÀ¸·Î, »ý¹°Àüȯ ´ë»ç°æ·Î¿Í ºñ»ý¹°Àû ¿ä¼Ò¸¦ °áÇÕÀ» ÅëÇÑ °øÁ¤ÀÇ ÃÖÀûÈ­¸¦ ÀÌ·ê ¼ö ÀÖ´Â °ÍÀ¸·Î º¸ÀÌ´Â ¿¹¶ó°í ÇÒ ¼ö ÀÖ´Ù. »ý¹°ÇÐÀû °øÁ¤À» ÅëÇØ »ý»êµÉ ¼ö ÀÖ´Â ¾ËÄÚ¿ÃÀÇ ¶Ç ´Ù¸¥ ¿¹·Î ºÎź¿ÃÀ» µé ¼ö ÀÖ´Ù. ¿¡Åº¿Ã¿¡ ºñÇØ ³ôÀº ¿¡³ÊÁö ¹Ðµµ¸¦ °¡Áö°í ÀÖÀ¸³ª ¹ßÈ¿°øÁ¤À» ÅëÇØ ¿¡Åº¿Ã°ú °°Àº ³ôÀº ³óµµ·Î »ý»êµÉ ¼ö ¾ø´Â ºÎź¿ÃÀÇ »ý»ê (Lee et al., 2008)Àº ¼¼Æ÷ ¿Ü ´ë»ç°æ·Î À籸ÃàÀ» ÅëÇÑ »ý»êÀÌ À¯¿ëÇÑ ´ë¾ÈÀÌ µÉ ¼ö ÀÖ´Â »ê¹°À̶ó ÇÒ ¼ö ÀÖ´Ù.


C6H12O6(aq) + 2ADP +2Pi ¡æ C4H10O(aq) + 2CO2(g) + 2ATP


3. ¹ÙÀÌ¿À ¼ö¼Ò


ź¼ÒÁ߸³ÀûÀÎ ¼ö¼Ò°¡½º´Â ¹Ì·¡ÀÇ ¼ö¼Û¿ë ¿¬·á·Î¼­ °¢±¤À» ¹Þ°í ÀÖ´Ù. ¼ö¼Ò°¡½º´Â È­ÇаøÁ¤, ¹ÙÀÌ¿À°øÁ¤, À¶ÇÕ°øÁ¤ÀÇ ´Ù¾çÇÑ °æ·Î¸¦ ÅëÇØ ¹ÙÀÌ¿À¸Å½º·ÎºÎÅÍ »ý»êµÉ ¼ö ÀÖÀ¸³ª ´ëºÎºÐÀÇ ÇöÁ¸ ±â¼úÀº ´ëºÎºÐ ÀÌ·Ð ¼öÀ²ÀÎ 12 H2/glucose¿¡ ÇÑÂü ¸ø ¹ÌÄ¡´Â ³·Àº ¼öÀ²°ú ºÎ»ê¹°ÀÇ »ý¼º ¹× °ÅÄ£ ¹ÝÀÀÁ¶°ÇÀÇ ÇѰ踦 °¡Áö°í ÀÖ´Ù (Zhang, 2009). ±×·¯³ª, ¼¼Æ÷ ¿Ü ´ë»ç°æ·ÎÀÇ À籸ÃàÀ» ÅëÇØ Æ÷µµ´çÀ¸·ÎºÎÅÍ °ÅÀÇ ÀÌ·ÐÄ¡¿¡ À̸£´Â ¼ö¼ÒÀÇ »ý»êÀÌ °¡´ÉÇÔÀÌ ÃÖ±Ù Zhangµî¿¡ ÀÇÇØ ÀÔÁõµÈ ¹Ù ÀÖ´Ù. ƯÈ÷ À̵éÀº starch³ª cellucoseµîÀÇ ¹ÙÀÌ¿À¸Å½º·ÎºÎÅÍ Ãâ¹ßÇÏ¿© one-pot¹ÝÀÀ¿¡ ÀÇÇØ ÀÌ·¯ÇÑ ³ôÀº ¼öÀ²À» ´Þ¼ºÇÒ ¼ö ÀÖ¾ú´Ù´Â Á¡ÀÌ ÁÖ¸ñÇÒ ¸¸ÇÏ´Ù. À̵éÀº glucan phosphorylase¿¡ ÀÇÇØ G1P¸¦ »ý¼ºÇÏ°í, À̸¦ phosphoglucomutase¿¡ ÀÇÇØ G6P·Î ÀüȯÇÑ ÈÄ 10°³ÀÇ È¿¼Ò¸¦ »ç¿ëÇÏ¿© À籸ÃàÇÑ pentose phosphate pathway¸¦ ÅëÇÏ¿© 12ºÐÀÚÀÇ NADPH¸¦ »ý¼ºÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿´´Ù. »ý¼ºµÈ NADPH´Â hydrogenase¿¡ ÀÇÇÑ ¼ö¼ÒÀÇ »ý»ê¿¡ ÀÌ¿ëµÇ¾ú´Ù.


C6H10O5(aq) + 7H2O(l) ¡æ 12H2(g) + 6CO2(g)

±×¸² 2. À籸¼ºµÈ ´ë»ç°æ·Î¸¦ ÅëÇÑ ¼ö¼Ò»ý»ê (Ãâó: Biotechnol Bioeng)

 

4. ¹ÙÀÌ¿À Àü±â


È­ÇÐÀû Ã˸Ÿ¦ »ç¿ëÇÏ¿© È­ÇÐÀû ¿¡³ÊÁö¸¦ Àü±â¿¡³ÊÁö·Î º¯È¯½ÃÅ°±â À§ÇÑ ¿¬·áÀüÁö´Â ÃÖ±Ù ¸¹Àº ¹ßÀüÀ» ÀÌ·ç¾î ¿Ô°í, ƯÈ÷ È¿¼Ò¸¦ ÀÌ¿ëÇÑ »ý¹°ÇÐÀû ¿¡³ÊÁöÀüȯ¿¡ ´ëÇÑ ¿¬±¸µµ È°¹ßÈ÷ ÁøÇàµÇ°í ÀÖ´Ù (Calabrese Barton et al., 2004; Cooney et al., 2008). È¿¼ÒµéÀº ´çÀ̳ª ¾ËÄÝ È¤Àº À¯±â»ê µîÀÇ ¹°ÁúµéÀ» »êÈ­ ¹× ȯ¿ø½ÃÅ°´Â È¿¼ÒµéÀ» À½±Ø°ú ¾ç±Ø¿¡ °íÁ¤È­½ÃÄÑ Àü±â¸¦ »ý¼ºÇÏ´Â È¿¼Ò¿¬·áÀüÁöµéÀº ºü¸¥ ¼Óµµ·Î ÃæÀüµÇ°í ³ôÀº ¿¡³ÊÁö ÀúÀå ¹Ðµµ¸¦ ´Þ¼ºÇÒ ¼ö ÀÖÀ¸³ª, ÇöÀç±îÁö »ó¾÷ÀûÀÎ È¿¼Ò ¿¬·áÀüÁö´Â °³¹ßµÇ¾îÀÖÁö ¾ÊÀºµ¥ ÀÌ´Â ÁÖ·Î È¿¼ÒÀÇ ³·Àº ¾ÈÁ¤¼º°ú ³·Àº Àü¾ÐÀ̶ó´Â ÇÑ°è¿¡ ±âÀÎÇÑ´Ù. ±×·¯³ª, Sony¸¦ ºñ·ÔÇÑ ¸î ¸î ±â¾÷µéÀº ²ÙÁØÈ÷ È¿¼Ò ¿¬·áÀüÁöÀÇ ¼º´ÉÀ» °³¼±Çϱâ À§ÇÑ ¿¬±¸°³¹ßÀ» °è¼ÓÇÏ°í ÀÖ´Ù (Sakai et al., 2009). ´çÀ̳ª ¿©Å¸ÀÇ À¯±â¹°À» ¿ÏÀüÈ÷ Àü±â·Î Àü±â¿¡³ÊÁö·Î º¯È¯ÇÒ ¼ö ÀÖ´Ù¸é ³ôÀº ¿¡³ÊÁö »ç¿ëÈ¿À², Áõ°¡µÈ ¿¡³ÊÁö ÀúÀå¹Ðµµ, È¿¼ÒÀúÇØÀÇ °¨¼Ò, ³ôÀº Ãâ·Â µîÀÇ ÀÕÁ¡À» °¡Á®¿Ã ¼ö ÀÖÀ» °ÍÀÌ´Ù (Cooney et al., 2008; Minteer et al., 2007). ÇÑÆí, ÇöÀç±îÁö °³¹ßµÈ ´ëºÎºÐÀº È­Çп¬·á¸¦ ¿ÏÀüÈ÷ »êÈ­½ÃÅ°Áö ¸øÇϹǷΠ¿¬·á¹°Áú¿¡ Æ÷ÇÔµÈ ¿¡³ÊÁöÀÇ ÀϺθ¸À» Àü±â¿¡³ÊÁö·Î Àüȯ½Ãų ¼ö ÀÖÀ» »ÓÀÌ´Ù (Bullen et al., 2006; Glykys and Banta, 2009; Ramanavicius et al, 2008; Sakai et al., 2009). ÇÑÆí ÃÖ±Ù Sokic-Lazic°ú Minteer´Â NAD(P)H¿Í FADH2 À» »ý»êÇϱâ À§ÇÑ 6Á¾ÀÇ È¿¼Ò¿Í 5Á¾ÀÇ º¸Á¶È¿¼Ò¸¦ »ç¿ëÇÏ¿© ¿¡Åº¿ÃÀ» ¿ÏÀüÈ÷ »êÈ­½Ãų ¼ö ÀÖ´Â citric acid cycle¸¦ ź¼ÒÀü±Ø¿¡ °íÁ¤È­µÈ È¿¼ÒµéÀ» »ç¿ëÇÏ¿© ±¸ÇöÇÔÀ¸·Î½á alcohol dehydrogenase ÇÑ Á¾·ùÀÇ È¿¼Ò¸¸À» ÀÌ¿ëÇÑ ¿¬·áÀüÁö¿¡ ºñÇØ power density¸¦ 8.71¹è·Î ȹ±âÀûÀ¸·Î Áõ°¡½Ãų ¼ö ÀÖ¾ú´Ù (Sokic-Lazic and Minteer, 2008).


 

±×¸² 3. Citric acid cycleÀÇ À籸¼ºÀ» ÅëÇÑ È¿¼Ò¿¬·áÀüÁöÀÇ °³¿ä (Ãâó: Curr Opin Biotechnol)

 

5. °íÂû


»ê¾÷Àû Àüȯ°øÁ¤À» ¼³°è¿¡´Â »ê¹°ÀÇ ¼öÀ², ³óµµ, »ý»ê¼º ¼¼ °¡Áö°¡ °í·ÁµÇ¾î¾ß ÇÑ´Ù. ¹ÙÀÌ¿ÀÄ¿¸Ó´õƼÀÇ »ý»ê¿¡ À־´Â ¼öÀ²ÀÌ °¡Àå Áß¿äÇÏ°Ô °í·ÁµÇ´Âµ¥ ÀÌ°ÍÀº »ý»êºñ¿ëÀÇ »ó´çºÎºÐ (~30-70%)ÀÌ ¿ø·á Áï ź¼öÈ­¹°ÀÇ °¡°Ý¿¡ ±âÀÎÇϱ⠶§¹®ÀÌ´Ù. ±× ´ÙÀ½À¸·Î °í·ÁµÇ¾î¾ß ÇÏ´Â °ÍÀº »ê¹°ÀÇ ³óµµ·Î ÀÌ´Â ÃßÈÄ »ê¹°ÀÇ ºÐ¸®Á¤Á¦ ºñ¿ë¿¡ ¿µÇâÀ» ¹ÌÄ¡±â ¶§¹®ÀÌ´Ù. ¹Ý¸é, °íºÎ°¡°¡Ä¡ »ê¹°ÀÇ »ý»ê¿¡ À־´Â ÀϹÝÀûÀ¸·Î ºÐ¸®Á¤Á¦ °øÁ¤ÀÌ Àüü ºñ¿ë¿¡¼­ Â÷ÁöÇÏ´Â ºñÁßÀÌ 80% ÀÌ»óÀ» Â÷ÁöÇÏ°Ô µÇ¹Ç·Î ¹ÝÀÀ¾×ÀÇ »ê¹° ³óµµ°¡ ÃÖ¿ì¼±À¸·Î °í·ÁµÇ¾î¾ß Çϸç ÃÖÁ¾»ê¹°°¡°ÝÀÇ 1% ÀÌÇϸ¦ Â÷ÁöÇÏ´Â ¿ø·á°¡°ÝÀÇ ºñÁßÀ¸·Î ÀÎÇØ Àüȯ¹ÝÀÀÀÇ ¼öÀ²Àº Å©°Ô °í·ÁµÇÁö ¾Ê´Â´Ù. ~$0.18/kg ($10.6/GJ)Á¤µµÀÎ ¹ÙÀÌ¿À¸Å½º ź¼öÈ­¹°ÀÇ °¡°Ý°ú ÇöÀç $2/gallon ($22.1/GJ)Á¤µµÀÎ ¿¡Åº¿ÃÀÇ °¡°ÝÀ» ±âÁØÀ¸·Î º¼ ¶§ °æÁ¦ÀûÀÎ ¿¡Åº¿ÃÀÇ »ý»êÀ» À§Çؼ­´Â ÃÖ¼Ò 70-80%ÀÇ ¼öÀ²ÀÌ È®º¸µÇ¾î¾ß ÇÑ´Ù. ºÎź¿Ã, FAME, ¾ËÄ­·ù µî ´Ù¸¥ Á¾·ùÀÇ ¹ÙÀÌ¿À ¿¬·áÀÇ »ý»ê¿¡ À־µµ ¿ø·áź¼öÈ­¹°¿¡ ´ëÇÑ ¹ÙÀÌ¿À¿¬·áÀÇ »ý»ê¼ºÀº ÀÌ·Ð ¼öÀ²ÀÇ ÃÖ¼Ò 70% ÀÌ»óÀÇ ¼öÀ²ÀÌ ´ãº¸µÇ¾î¾ß ÇÑ´Ù. È£±â¼º ¹ßÈ¿°úÁ¤¿¡¼­´Â ¿ø·á ź¼öÈ­¹°ÀÇ 50-90%°¡ Çø±â¼º ¹ßÈ¿¿¡¼­´Â ~10%Á¤µµ°¡ ¼¼Æ÷ÀÇ ¼ºÀåÀ» À§ÇØ »ç¿ëµÈ´Ù´Â Á¡À» °í·ÁÇÒ ¶§ ¼¼Æ÷¹è¾ç°øÁ¤À» ÅëÇØ À̷мöÀ²¿¡ ±ÙÁ¢ÇÏ´Â »ê¹°»ý»ê¼öÀ²À» ȹµæÇϱâ À§Çؼ­´Â ±ÕÁÖÀÇ ¼±Åðú °øÁ¤ÀÇ ¼³°è¿¡¼­ ¸¹Àº ºÎºÐµéÀÌ °í·ÁµÇ¾î¾ß ÇÔÀ» ¾Ë ¼ö ÀÖ´Ù. ¿¡Åº¿Ã ¹ßÈ¿´Â ÇöÀç±îÁö °³¹ßµÈ °øÁ¤ Áß¿¡¼­ °¡Àå ³ôÀº ¼öÀ²À» ´Þ¼ºÇÑ °øÁ¤À¸·Î ÀÌ·Ð ¼öÀ²ÀÇ 90-95%¿¡ À̸£´Â ¼öÀ²·Î »ý»êµÇ°í ÀÖ´Ù. ±×·¯³ª, ºÎź¿ÃÀÇ °æ¿ì´Â »ê¹°ÀÇ ÀúÇØÀÛ¿ë µîÀÇ ÀÌÀ¯·Î ÀÎÇØ 90% ¼öÀ²¿¡ µµ´ÞÇϱⰡ Èûµç ½ÇÁ¤ÀÌ´Ù.
ÀÌ¿¡ ºñÇØ, ¼¼Æ÷ ¿Ü¿¡¼­ À籸ÃàµÈ ÇÕ¼º ´ë»ç³×Å©¿öÅ©´Â ±âÁú°ú »ê¹°ÀÇ Àü´ÞÀ» ÀúÇØÇÏ´Â ¼¼Æ÷¸·ÀÇ ºÎÀç, ±âÁú Àü´ÞÀ» À§ÇÑ ¿¡³ÊÁö»ç¿ë ºÒÇÊ¿ä, ´Ù·®ÀÇ È¿¼Ò»ç¿ë °¡´É µîÀÇ ÀÕÁ¡À¸·Î ÀÎÇØ ¼¼Æ÷±â¹ÝÀÇ Àüȯ¹ÝÀÀ¿¡ ºñÇØ ³ôÀº ¼öÀ²°ú »ý»ê¼º µµ´ÞÀ» °¡´ÉÇÏ°Ô ÇÒ ¼ö ÀÖ´Ù. ÃÖ±ÙÀÇ º¸°í¿¡ µû¸£¸é ÀçÁ¶ÇÕ È¿¼Ò¸¦ »ç¿ëÇÑ ´ë»ç°æ·ÎÀÇ À籸ÃàÀ» ÅëÇØ ¹ÙÀÌ¿À¼ö¼ÒÀÇ »ý»êÀ» 20¹è ÀÌ»ó Áõ°¡½Ãų ¼ö ÀÖ¾úÀ¸¸ç »ç¿ëµÇ´Â È¿¼Ò·®ÀÇ Áõ°¡, °í¿Â°øÁ¤ÀÇ Àû¿ë, ±âÁú³óµµÀÇ Áõ°¡, ´ë»çÁß°£¹°ÀÇ Ã¤³Î¸µ µîÀÇ ¹æ¹ýÀ» ÅëÇØ ±× »ý»ê¼ºÀ» ´õ¿í Çâ»ó½Ãų ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµÈ´Ù.
¾ËÄڿðú À¯±â»ê µî°ú °°Àº ´ë»ç»ê¹°Àº Á¾Á¾ ¹Ì»ý¹° ¹ßÈ¿°øÁ¤ÀÇ Á¦ÇÑ¿ä¼Ò·Î ÀÛ¿ëÇÏ°Ô µÈ´Ù. ÀÌµé »ê¹°¿¡ ÀÇÇÑ ¼¼Æ÷ÀÇ ÀúÇØ´Â ´ëºÎºÐ À̵é·Î ÀÎÇÑ ¼¼Æ÷¸·ÀÇ Æı«¿¡ ±âÀÎÇÏ°Ô µÇ¸ç ½ÇÁ¦ Àüȯ¹ÝÀÀ¿¡ Âü¿©ÇÏ´Â È¿¼ÒµéÀº »ê¹°¿¡ ÀÇÇÑ ÀúÇظ¦ ½ÉÇÏ°Ô ¹ÞÁö ¾Ê´Â °ÍÀÌ ÀϹÝÀûÀÌ´Ù. Áï, È¿¼ÒµéÀº ¼¼Æ÷¸·¿¡ ºñÇÏ¿© ´õ ³ôÀº »ê¹°ÀúÇ×¼ºÀ» °¡Áö¸ç ¿¹¸¦ µé¾î, °õÆÎÀÌ À¯·¡ÀÇ cellulaseµéÀº 200g/LÀÇ ¿¡Åº¿Ã ȤÀº 100g/LÀÇ ºÎź¿Ã Á¸Àç ½Ã¿¡µµ ¾à 20% Á¤µµÀÇ È°¼º °¨¼Ò¸¸À» º¸ÀÌ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. ´õ¿íÀÌ È¿¼ÒµéÀÇ À¯±â¿ë¸Å¿¡ ´ëÇÑ ÀúÇ×¼ºÀº ´Ü¹éÁú °øÇбâ¹ýÀ» ÅëÇÏ¿© ´õ¿í Çâ»ó½Ãų ¼ö ÀÖÀ¸¹Ç·Î ¼¼Æ÷¸¦ »ç¿ëÇÑ »ý¹°Àüȯ¿¡ ºñÇØ °í³óµµÀÇ »ê¹°À» ÀúÇØÀÛ¿ë ¾øÀÌ »ý»êÇÒ ¼ö ÀÖÀ» °ÍÀÌ´Ù.
È¿¼Ò¸¦ »ç¿ëÇÑ ´ë»ç°æ·ÎÀÇ À籸ÃàÀº ¿ÏÀüÈ÷ »õ·Î¿î °³³äÀº ¾Æ´Ï´Ù. ±×·¯³ª, À̸¦ ÅëÇÑ ¹ÙÀÌ¿À»ê¹°ÀÇ »ý»êÀº ATP ¹× NAD(P)HÀÇ ¹ë·±½º¸¦ Æ÷ÇÔÇÑ Á¤±³ÇÑ ´ë»ç°æ·ÎÀÇ ¼³°è, È¿¼ÒÀÇ °³·® ¹× ¾ÈÁ¤È­, °æÁ¦ÀûÀÎ Á¶È¿¼ÒÀÇ Àç»ç¿ë µîÀÇ ¸Á¶ó¸¦ ¿ä±¸ÇÏ´Â »õ·Î¿î ±â¼ú·Î ºÎ°¢µÇ°í ÀÖ´Ù. ¼¼Æ÷¿Ü¿¡¼­ À籸ÃàµÈ ´ë»ç°æ·Î¸¦ ÅëÇÏ¿© ¸ñÀû»ê¹°µéÀ» ´ë·®»ý»êÇϱâ À§Çؼ­´Â µÎ °¡Áö ±â¼úÀû ¿äÀεéÀÌ ÇØ°áµÇ¾îÁ®¾ß ÇÑ´Ù. ¿ì¼±, Ç¥ÁØÈ­µÈ ºÎÇ°À¸·Î¼­ÀÇ È¿¼ÒµéÀÇ ¾ÈÁ¤È­ ±â¼úÀÌ È®º¸µÇ¾î¾ß ÇÑ´Ù. ½º¸¶Æ®Æù, µðÁöÅÐ Ä«¸Þ¶ó µîÀÇ ¿¹¿¡¼­ º¸ÀÌ´Â ¹Ù¿Í °°ÀÌ ¾ÈÁ¤ÀûÀ¸·Î ±â´ÉÇÒ ¼ö Àִ ǥÁØÈ­µÈ È¿¼ÒºÎÇ°µéÀº À¯¿ëÈ­Çй°ÁúÀÇ »ý»êÀ» À§ÇØ Àå½Ã°£ ÀÛµ¿µÉ ¼ö ÀÖ´Â ÀΰøÀûÀÎ ´ë»ç°æ·ÎÀÇ ±¸ÃàÀ» ¿ëÀÌÇÏ°Ô ÇÒ ¼ö ÀÖÀ» °ÍÀÌ´Ù. ¶ÇÇÑ, kinetic modeling, metabolite flux analysis, metabolic control analysisµîÀÇ ´Ù¾çÇÑ ±â¹ýÀÇ Àû¿ëÀ» ÅëÇØ »ý»ê¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â Ç÷§ÆûÀÌ ±¸ÃàµÇ¾îÁ®¾ß ÇÒ °ÍÀÌ´Ù.

 

6. Âü°í¹®Çå


1. Atsumi S, Hanai T, Liao JC. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89.
2. Benner SA, Sismour AM. 2005. Synthetic biology. Nat Rev Genet 6(7):533–543.
3. Bhosale S, Rao M, Deshpande V. 1996. Molecular and industrial aspects of glucose isomerase. Microbiol Rev 60(2):280–300.
4. Boyer ME, Stapleton JA, Kuchenreuther JM, Wang C-W, Swartz JR. 2008. Cell-free synthesis and maturation of [FeFe] hydrogenases. Biotechnol Bioeng 99(1):59–67.
5. Buchner E: Alkoholische Gahrung ohne Hefezellen (Vorlaufige Mittheilung). Ber Chem Ges 1897, 30:117-124.
6. Bullen RA, Arnot TC, Lakeman JB, Walsh FC. 2006. Biofuel cells and their development. Biosens Bioelectron 21(11):2015–2045.
7. Calabrese Barton S, Gallaway J, Atanassov P. 2004. Enzymatic biofuel bells for implantable and microscale devices. Chem Rev 104(10):4867–4886.
8. Chang A, Scheer M, Grote A, Schomburg I, Schomburg D. 2009. BRENDA, AMENDA and FRENDA the enzyme information system: New content and tools in 2009. Nucleic Acids Res 37(Suppl 1):D588–D592.
9. Chang MCY, Keasling JD. 2006. Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2(12):674–681.
10. Chaudhuri SK, Lovley DR. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21(10):1229–1232.
11. Chi Y, Scroggins ST, Frechet JMJ. 2008. One-pot multi-component asymmetric cascade reactions catalyzed by soluble star polymers with highly branched non-interpenetrating catalytic cores. J Am Chem Soc 130(20):6322–6323.
12. Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD. 2008. Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337.
13. Daines AM, Maltman BA, Flitsch SL. 2004. Synthesis and modifications of carbohydrates, using biotransformations. Curr Opin Chem Biol 8:106–113.
14. Demain AL. 2000. Small bugs, big business: The economic power of the microbe. Biotechnol Adv 18(6):499–514.
15. Forster AC, Church GM. 2007. Synthetic biology projects in vitro. Genome Res 17(1):1–6.
16. Glykys DJ, Banta S. 2009. Metabolic control analysis of an enzymatic biofuel cell. Biotechnol Bioeng 102(6):1624–1635.
17. Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU. 2003. Production of complex human glycoproteins in yeast. Science 301(5637):1244–1246.
18. Hirao I, Ohtsuki T, Fujiwara T, Mitsui T, Yokogawa T, Okuni T, Nakayama H, Takio K, Yabuki T, Kigawa T, Kodama K, Yokogawa T, Nishikawa K, Yokoyama S. 2002. An unnatural base pair for incorporating amino acid analogs into proteins. Nat Biotechnol 20(2):177–182.
19. Hummel W. 1999. Large-scale applications of NAD(P)-dependent oxidoreductases: Recent developments. Trends Biotechnol 17(12):487–492.
20. Kalscheuer R, Stolting T, Steinbuchel A. 2006. Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152(9):2529–2536.
21. Klein-Marcuschamer D, Ajikumar PK, Stephanopoulos G. 2007. Engineering microbial cell factories for biosynthesis of isoprenoid molecules: Beyond lycopene. Trends Biotechnol 25(9):417–424.
22. Maeda T, Sanchez-Torres V, Wood TK. 2008. Metabolic engineering to enhance bacterial hydrogen production. Microb Biotechnol 1(1):30–39.
23. Maynard J, Georgiou G. 2000. Antibody engineering. Annu Rev Biomed Eng 2(1):339.
24. Meyer A, Pellaux R, Panke S. 2007. Bioengineering novel in vitro metabolic pathways using synthetic biology. Curr Opin Microbiol 10:246–253.
25. Logan BE. 2004. Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38:160A–167A.
26. Logan BE, Regan J. 2006. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518.
27. Lynd LR, Wyman CE, Gerngross TU. 1999. Biocommodity engineering. Biotechnol Prog 15:777–793.
28. Nelson DL, Cox MM: Lehninger Principles of Biochemistry (5th edition). New York: WH Freeman; 2008.
29. Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG. 1989. A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244(4901):182–188.
30. Ramanavicius A, Kausaite A, Ramanaviciene A. 2008. Enzymatic biofuel cell based on anode and cathode powered by ethanol. Biosens Bioelectron 24(4):761–766.
31. Sakai H, Nakagawa T, Tokita Y, Hatazawa T, Ikeda T, Tsujimura S, Kano K. 2009. A high-power glucose/oxygen biofuel cell operating under quiescent conditions. Energy Environ Sci 2:133–138.
32. Shaeri J, Wright I, Rathbone EB, Wohlgemuth R, Woodley JM. 2008. Characterization of enzymatic D-xylulose 5-phosphate synthesis. Biotechnol Bioeng 101(4):761–767.
33. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR. 2008. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105:13769–13774.
34. Sokic-Lazic D, Minteer SD. 2008. Citric acid cycle biomimic on a carbon electrode. Biosens Bioelectron 24(4):939–944.
35. Vasic-Racki D. 2006. History of industrial biotransformations—Dreams and realities. In: Liese A, Seebald S, Wandrey C, editors. Industrial biotransformations. Weinheim: Wiley-VCH KGaA. p 1–37.
36. Zhang Y-HP, Lynd LR. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824.
37. Welch P, Scopes RK: Studies on cell-free metabolism: ethanol production by a yeast glycolytic system reconstituted from purified enzymes. J Biotechnol 1985, 2:257-273.
38. Wichmann R, Vasic-Racki D. 2005. Cofactor regeneration at the lab scale. Adv Biochem Eng Biotechnol 92:225–260.
39. Zhang Y-HP: A sweet out-of-the-box solution to the hydrogen economy: is the sugar-powered car science fiction? Energy Environ Sci 2009, 2:272-282.
40. Zhong JJ. 2001. Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. Adv Biochem Eng Biotechnol 72:1–26.

 




Total:118 page:(8/4)
70 Á¤º¸ ±èÇå½Ä ÀÚ¿¬»ìÇؼ¼Æ÷¿Í Ç׾ϸ鿪ġ·á ¿¬±¸µ¿Çâ 16.08.03 10236
69 Á¤º¸ ¼ÛÀ籤 ÀÚ¿¬ÀÇ ÇÕ¼º Àü·«À» ½ÇÇè½Ç·Î ¿Å°Ü¿Â È¿¼Ò ¿¬¼Ó´Ü.. 16.07.19 7788
68 Á¤º¸ Àü»ó¿ë ¾Ï Ä¡·á¿ë Ç¥ÀûÇü ³ª³ë¾à¹°Àü´Þ½Ã½ºÅÛÀÇ °³¹ß µ¿.. 16.07.19 17929
67 Á¤º¸ ÀÌÁö¿À Àΰø ´Ü¹éÁú ³ª³ë±¸Á¶Ã¼ ÃֽŠ¿¬±¸µ¿Çâ 16.04.12 8846
66 Á¤º¸ À̴뿱 Let-7 miRNA biogenesis 16.03.31 11219
65 Á¤º¸ Á¤¿øÀÏ Class III ADH È°¼º¾ïÁ¦¸¦ ÅëÇÑ °£¼¶À¯È­ Ä¡·á±â.. 16.03.31 11750
64 Á¤º¸ ±è¹Ì¿µ ¾ÏÀüÀÌ Ä¡·áÁ¦ °³¹ßÀ» À§ÇÑ ÃֽŠ¿¬±¸ µ¿Çâ 16.03.18 8713
63 Á¤º¸ À±¿µ°É ¹ÌÅäÄܵ帮¾Æ DNA ÇÕ¼º»ý¹°ÇÐ ¿¬±¸ µ¿Çâ 16.03.07 10413
62 Á¤º¸ ÇÑ°©ÈÆ Áø±Õ¿¡¼­ ¹ß°ßµÈ »õ·Î¿î ±â´ÉÀÇ ¸ÞÆ¿ÀüÀÌÈ¿¼Òµé°ú.. 16.01.07 12024
61 Á¤º¸ ÀÌÇö¼ö È¿¼Ò¸¦ ÀÌ¿ëÇÑ Ãµ¿¬¹° À¯µµÃ¼ÀÇ ±Û¸®ÄÚ½ÇÈ­ 16.01.07 12691
60 Á¤º¸ ¹æµÎÈñ ÇÕ¼º »ý¹°ÇÐ ¿¬±¸¸¦ À§ÇÑ ±â¹Ý ±â¼ú·Î¼­ÀÇ ´Ü¼¼Æ÷.. 16.01.07 13798
59 Á¤º¸ ±è±ÙÁß À¯ÀüÀÚ ¹ßÇö°ú °ü·ÃµÈ »õ·Î¿î ³í¸®¿Í ÇÕ¼º»ý¹°ÇÐ.. 15.12.30 16614
58 Á¤º¸ ±èÈñÅà ÆéŸÀÌµå ±â¹Ý ÀÚ°¡ Á¶¸³ ±¸Á¶Ã¼ ¿¬±¸ÀÇ µ¿Çâ ¹× .. 15.12.30 11206
57 Á¤º¸ ±èÁöÇö ½Ã½ºÅÛ»ý¹°ÇÐÀÇ ÇÕ¼º»ý¹°ÇÐ Àû¿ë ¿¬±¸µ¿Çâ 15.09.10 20732
56 Á¤º¸ ±èµ¿¸³ ¹Ì»ý¹°À» ÀÌ¿ëÇÑ È­Çй°Áú »ý»ê ¿¬±¸µ¿Çâ 15.09.02 12331
55 Á¤º¸ ÀÌÁ¤°É »ýÃ˸ÅÀÇ ¾÷±×·¹À̵ùÀ» À§ÇÑ °íÁ¤È­ ¿¬±¸ µ¿Çâ 15.08.21 16147
[1] [2] [3] [4] [5] [6] [7] [8]