¿ÞÂÊ ¸Þ´º ŸÀÌƲ À̹ÌÁö
¿¬±¸µ¿Çâ

Home < ¿­¸°¸¶´ç < ¿¬±¸µ¿Çâ

       InteinÀ» È°¿ëÇÑ ÇÕ¼º»ý¹°ÇÐ ºÎÇ° °³¹ßµ¿Çâ
       kimsg7596@kaist.ac.kr        
       ÃÖÁ¾Çö        2014.05.07 16:02        16831
´Ù¿î·Îµå : InteinÀ»_È°¿ëÇÑ_ÇÕ¼º»ý¹°ÇÐ_ºÎÇ°_°³¹ßµ¿Çâ_ÃÖÁ¾Çö ¹Ú»ç.pdf(375 Kb)
 

InteinÀ» È°¿ëÇÑ ÇÕ¼º»ý¹°ÇÐ ºÎÇ° °³¹ßµ¿Çâ

                                                                 

                                                                               Çѱ¹»ý¸í°øÇבּ¸¿ø ¹ÙÀÌ¿À¸®ÆÄÀ̳ʸ®¿¬±¸¼¾ÅÍ

ÃÖÁ¾Çö, Á¤´ëÀº

1. °³¿ä

 °ú°Å ´ÜÀÏ À¯ÀüÀÚ¸¦ µµÀÔÇÏ¿© ÇüÁú Àüȯü¸¦ Á¦ÀÛÇÏ´Â °ÍÀ¸·ÎºÎÅÍ ½ÃÀÛÇÑ ÇÕ¼º »ý¹°ÇÐÀº, ÇöÀç DNA, RNA ¹× ´Ü¹éÁúÀ» ±â¹ÝÀ¸·Î ÇÏ´Â ´Ù¼öÀÇ »ý¹°ÇÐÀû ÀÎÀÚµé·Î ±¸¼ºµÈ toggle switch, oscillator, timer ¹× counter¿Í °°Àº ÀåÄ¡¸¦ Æ÷ÇÔÇÑ À¯ÀüÀÚ È¸·Î¸¦ À̽ÄÇÑ ¼¼Æ÷¸¦ Á¦ÀÛÇÏ´Â ¼öÁرîÁö ¹ßÀüÇØ ¿Ô´Ù. ±×·³¿¡µµ ºÒ±¸ÇÏ°í ÇöÀç±îÁö ÇÕ¼º »ý¹°ÇÐÀû ±â¼úÀÌ Àû¿ëµÈ ¼¼Æ÷ ´ëºÎºÐÀÌ ¼³Ä¡µÈ À¯ÀüÀÚ È¸·ÎÀÇ ¼³°è»ó ±â´ÉÀÌ ½ÇÁ¦ ¼öÇà µÇ´Â°¡¿¡ ´ëÇÑ °ËÁõÀ» ÇÏ´Â ¼öÁØÀ̸ç, ½ÇÁ¦ÀûÀÎ È°¿ë¿¡ ¸ñÀûÀ» ¸ÂÃá ¿¬±¸´Â °ÅÀÇ ÁøÇàµÇ°í ÀÖÁö ¾Ê´Ù. ÀÌ¿Í °°Àº ÇöÀçÀÇ Á¦ÇÑÀ» ±Øº¹ÇÏ°í ÇÕ¼º »ý¹°ÇÐÀÇ ±Ã±ØÀûÀÎ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§Çؼ­´Â, ´Ù¾çÇÑ ±â´ÉÀ» °®´Â »õ·Î¿î ÀåÄ¡ÀÇ ¼³Ä¡¿Í ´õºÒ¾î À̵éÀÇ À¯±âÀû ¿¬°áÀ» À§ÇÑ ³í¸® ȸ·Î°¡ ÅëÇÕÀûÀ¸·Î Àû¿ëµÈ º¹ÀâÇÑ À¯ÀüÀÚ È¸·ÎÀÇ °³¹ßÀÌ ÇÊ¿äÇÏ´Ù. ÀÌ·¯ÇÑ ÅëÇÕ °úÁ¤¿¡¼­ ÇöÀç ÇÕ¼º »ý¹°ÇÐÀÌ ÇØ°áÇØ¾ß ÇÏ´Â Àå¾Ö¹°µé Áß Çϳª¸¦ ¸¸³ª°Ô µÈ´Ù.

ÇÕ¼º »ý¹°ÇÐÀÇ À¯ÀüÀÚ È¸·Î¸¦ °£´ÜÇÏ°Ô ¼³¸íÇÒ ¶§ ¶Ç´Â ¼³°è¸¦ À§ÇÑ ·Ñ ¸ðµ¨·Î½á ÀüÀÚ±â ȸ·Î¿ÍÀÇ ºñ±³°¡ Á¾Á¾ ÀÌ¿ëµÈ´Ù. ±×·¯³ª À̵éÀº ±Ùº»ÀûÀÎ Â÷À̸¦ °®°í ÀÖ´Ù. ÀüÀÚ±âÀû ȸ·Î ±¸¼º¿¡ ±Ù°£ÀÌ µÇ´Â PCB (Printed Circuit Board)¿¡´Â µ¿ÀÏÇÑ Á¾·ù ȤÀº µ¿ÀÏÇÑ ±â´ÉÀ» ÇÏ´Â ÀåÄ¡, ¿¹¸¦ µé¸é Äܵ§¼­ (condenser) ¿Í ´ÙÀÌ¿Àµå (diode)¿Í °°Àº ÀåÄ¡µéÀ» ÇϳªÀÇ PCB¿¡ ¿©·¯ °³°¡ ¼³Ä¡µÇ¾îµµ ¹®Á¦°¡ µÇÁö ¾Ê´Â´Ù. ¿ì¸®°¡ Àϻ󿡼­ ÀÌ¿ëÇÏ´Â ÄÄÇ»ÅÍ, ÈÞ´ëÆù ¹× TV µîÀÇ ÀüÀÚ Á¦Ç°¿¡ Æ÷ÇÔµÈ Àü±â ȸ·Îµé ¿ª½Ã ÀÌ·¸°Ô ±¸¼ºµÇ¾î ÀÖ´Ù (±×¸² 1A). ±×·¯³ª ÇÕ¼º »ý¹°ÇÐÀÇ plateformÀÌ µÇ´Â ¼¼Æ÷¿¡ PCBó·³ µ¿ÀÏÇÑ ÀåÄ¡ ¿©·¯ °³¸¦ ¼³Ä¡ÇÏ´Â °ÍÀº ±ØÈ÷ ¾î·Æ´Ù. PlateformÀ¸·Î½á ¼¼Æ÷´Â PCBó·³ °íÁ¤µÈ ÇüÅ°¡ ¾Æ´Ñ À¯µ¿ÀûÀΠƯ¼ºÀ» °®°í Àֱ⠶§¹®ÀÌ´Ù. ¹°·Ð plateformÀÇ ±âº» ¹°ÁúÀÌ µÇ´Â ¼¼Æ÷ÁúÀº ¼¼Æ÷³» Á¸ÀçÇÏ´Â ¸¹Àº ¼öÀÇ »ýü ºÐÀÚµé°ú bacterial microcompartments (BMC)[1]¿Í °°Àº ºÐȹµÈ ¿µ¿ªÀÇ Á¸Àç·Î ÀÎÇØ ¿ì¸®°¡ ÀϹÝÀûÀ¸·Î °üÂûÇÒ ¼ö ÀÖ´Â ¾×üµé°ú °°Àº ÀÚÀ¯µµ¸¦ °®Áö ¾ÊÀ¸³ª[2], PCB¿Í ºñ±³ÇØ º¼ ¶§ ¼¼Æ÷³» ¼³Ä¡µÈ À¯ÀüÀÚ È¸·Îµé »çÀÌÀÇ °£¼·ÀÌ ÀϾ È®·üÀº ¸Å¿ì ³ôÀ¸¸ç, ÀÌ·¯ÇÑ °á°ú°¡ ¿©·¯ °¡Áö·Î º¸°íµÇ°í ÀÖ´Ù. µû¶ó¼­ ÇϳªÀÇ ¼¼Æ÷¿¡ ¼³Ä¡µÈ À¯ÀüÀÚ È¸·ÎµéÀÇ µ¶¸³ÀûÀÎ ±¸µ¿ÀÌ ÀüÁ¦µÇ·Á¸é, °¢ ȸ·Î¸¶´Ù °¢±â ´Ù¸¥ ºÎÇ°À» ÀÌ¿ëÇØ Á¦ÀÛÇؾßÇÑ´Ù. ÀÌ·¯ÇÑ ÀÌÀ¯·Î ´Ù¼öÀÇ À¯ÀüÀÚ È¸·Î¸¦ ÇϳªÀÇ ¼¼Æ÷¿¡ ¼³Ä¡ÇÒ ¶§ ¿ä±¸µÇ´Â ºÎÇ°ÀÇ ¼ö°¡ ºü¸£°Ô Áõ°¡ÇÏ°Ô µÈ´Ù. ¿¹¸¦ µé¸é µÎ °³ÀÇ 2°³ÀÇ ÇÁ·Î¸ðÅÍ¿Í Àü»çÀÎÀÚ·Î ±¸¼ºµÈ toggle switch[3]¸¦ ÇϳªÀÇ ¼¼Æ÷¿¡ ¼³Ä¡ÇÏ´Â °ÍÀ» °í·ÁÇÒ ¶§, ÀüÀÚ±â ȸ·Î¿Í °°´Ù¸é ¸î °³¸¦ ¼³Ä¡ÇÏ¿©µµ ÇÊ¿äÇÑ 2°³ÀÇ ÇÁ·Î¸ðÅÍ¿Í Àü»çÀÎÀÚ¸¸ ÀÖÀ¸¸é µÈ´Ù. ±×·¯³ª ¼¼Æ÷¿¡ µÎ °³¸¦ ¼³Ä¡Çϱâ À§Çؼ­´Â 4, ¼¼ °³ÀÏ ¶§´Â 6°³, 10°³ ÀÏ ¶§´Â 20°³ÀÇ ÇÁ·Î¸ðÅÍ¿Í Àü»çÀÎÀÚ°¡ ÇÊ¿äÇÏ´Ù (±×¸² 1)[4]. µû¶ó¼­ ÇÕ¼º »ý¹°ÇÐÀÇ ±Ã±ØÀûÀÌ ¸ñÇ¥ ´Þ¼ºÇϱâ À§ÇÑ ´Ù±â´ÉÀÇ º¹ÀâÇÑ À¯ÀüÀÚ È¸·Î¸¦ Á¦ÀÛÇϱâ À§Çؼ­ ´Ù¾çÇÏ°í ¸¹Àº ºÎÇ° È®º¸°¡ ¿ä±¸µÈ´Ù.

 

 ±×¸² 1. ÀüÀÚ±â ȸ·Î¿Í À¯ÀüÀÚ È¸·Î. a, µ¿ÀÏÇÑ condenserµéÀÌ ÀåÂøµÈ PCB, b, À¯ÀüÀÚ È¸·ÎÀÇ toggle switch

2. À¯ÀüÀÚ È¸·Î ºÎÇ°ÀÇ È®º¸

 À¯ÀüÀÚ È¸·Î ±¸¼ºÀ» À§ÇÑ ºÎÇ° È®º¸´Â Å©°Ô µÎ °¡Áö ¹æ¹ýÀ» ÅëÇØ ÀÌ·ïÁö°í ÀÖ´Ù. Çϳª´Â plateformÀ¸·Î ÀÌ¿ëµÇ´Â ¼÷ÁÖ¿Í ±Ù¿¬°ü°è°¡ ¸Õ ÀÌÁ¾ ¼¼Æ÷·ÎºÎÅÍ À¯·¡ÇÑ ÀÚ¿¬ ȸ·Î (¼¼Æ÷°¡ ¿ÜºÎ ȤÀº ³»ºÎ ȯ°æ º¯È­¿¡ ´ëÀÀÇϱâ À§ÇØ °®°í ÀÖ´Â °íÀ¯ÀÇ network¸¦ ÅëĪÇÑ´Ù) ·ÎºÎÅÍ ºÎÇ°À» ¾ò´Â °ÍÀÌ´Ù. ÀÌ °°Àº ¹æ¹ýÀ» ÅëÇØ ³í¸® ȸ·Î¸¦ Á¦ÀÛÇÑ ´ëÇ¥ÀûÀÎ ¿¹·Î, Pseudomonas syringae·ÎºÎÅÍ À¯·¡ÇÑ co-activating Àü»ç ÀÎÀÚ HrpR, HrpS¿Í À̵éÀÌ ÀνÄÇÏ´Â cis-Àü»çÀÎÀÚ·Î sigma 54-depnendent hrpL promoter¸¦ ÇÔ²² E. coli¿¡ À̽ÄÇØ Á¶ÀÛ¼º (modularity) °ú µ¶¸³¼º (orthogonality)¸¦ È®º¸ÇÑ AND, NOT ¹× NAND gate¸¦ Á¦ÀÛÇÑ º¸°í°¡ ÀÖ´Ù[5]. ¶Ç ´Ù¸¥ ¹æ¹ýÀº ÀÚ¿¬ ȸ·Î¿¡ Á¸ÀçÇÏÁö ¾Ê´Â Àΰø ºÎÇ°À» Á¦ÀÛÇÏ´Â °ÍÀÌ´Ù. ÁøÇÙ ¼¼Æ÷ÀÇ Àü»ç ÀÎÀÚ°¡ DNA ÀνÄÀ» À§ÇØ zinc finger domainÀ» ÁÖ·Î ÀÌ¿ëÇÑ´Ù´Â °ÍÀ» ±Ù°Å·Î, ÀΰøÀÇ DNA ¼­¿­À» ÀνÄÇÒ ¼ö ÀÖ´Â Àΰø zinc finger domainÀ» Á¦ÀÛÇÏ¿© È¿¸ð ¾È¿¡ Àΰø À¯ÀüÀÚ È¸·Î¸¦ Á¦ÀÛÇÑ º¸°í°¡ ÀÖ´Ù[6]. ÀÌ¿Í ´õºÒ¾î ¿øÇÙ¼¼Æ÷¿¡¼­ DNA ÀνĿ¡ ÁÖ·Î ÀÌ¿ëµÇ´Â helix-turn-helix motif·Î ÁøÇÙ ¼¼Æ÷¿¡ Àû¿ë Àΰø Àü»çÀÎÀÚ¸¦ Á¦ÀÛÇÔÀ¸·Î½á µ¶¸³¼ºÀ» È®º¸ÇÑ ¿¹ ¶ÇÇÑ Á¸ÀçÇÑ´Ù.

 ±×·¯³ª ÇöÀç±îÁö Á¦ÀÛµÈ ´ëºÎºÐÀÇ À¯ÀüÀÚ È¸·Î¿Í ³í¸® ȸ·Î´Â ½ÅÈ£ÀÇ ÀÔ·Â, °è»ê ¶Ç´Â ¿¬»ê°ú Ãâ·Â¿¡ À̸£´Â ¸ðµç °úÁ¤¿¡¼­ Àü»ç ¶Ç´Â ¹ø¿ª °úÁ¤À» ±Ù°£À¸·Î ÇÏ°í ÀÖ´Ù. µû¶ó¼­ ´ÙÁß ÀÔ·ÂÀÌ ÇÊ¿äÇÑ À¯ÀüÀÚ È¸·Î ¶Ç´Â ´ÙÃþ ±¸Á¶ÀÇ ³í¸® ȸ·Î¸¦ ±¸¼ºÇÏ´Â °æ¿ì ¿ä±¸µÇ´Â Àü»ç ÀÎÀÚÀÇ ¼ö´Â Áõ°¡Çϸç, È°¿ë °¡´ÉÇÑ ºÎÇ°ÀÇ ¼ö´Â ºü¸£°Ô °í°¥ µÈ´Ù(±×¸² 2). ¶ÇÇÑ ½ÅÈ£ÀÇ Ã³¸®°úÁ¤¿¡¼­ ÃÖ¼Ò 2¹øÀÇ Àü»ç¿Í ¹ø¿ª°úÁ¤À» ¿ä±¸Çϱ⠶§¹®¿¡ À¯ÀüÀÚ È¸·ÎÀÇ ÀÔÃâ·Â °£°ÝÀÌ ±æ°í º¹ÀâÇÑ ±¸Á¶¸¦ °®°Ô µÈ´Ù. ÀÌ´Â °á±¹ À¯ÀüÀÚ È¸·ÎÀÇ ¹ÝÀÀ¼º °¨¼Ò¸¦ À¯¹ßÇÏ¿© ½ÇÁ¦·Î ¼³°èµÈ ½ÇÇèÀ» °ËÁõÇϴµ¥ ¸¹Àº ¾î·Á¿òÀ» °Þ´Â´Ù. µû¶ó¼­ À¯ÀüÀÚ È¸·ÎÀÇ ½Ç ÀÀ¿ëÀ» À§ÇØ ¿ä±¸µÇ´Â µ¶¸³¼º°ú ¹ÝÀÀ¼ºÀ̶ó´Â µÎ ¸¶¸® Åä³¢¸¦ Àâ±â À§Çؼ­´Â Àü»ç ¶Ç´Â ¹ø¿ªÀÎÀÚ¿¡ ÀÇÁ¸ÇÑ ºÎÇ° ¿Ü¿¡ ´Ù¸¥ ÇüÅÂÀÇ ºÎÇ°ÀÇ µµÀÔ À¯¿ëÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î »ç·áµÈ´Ù.

 

±×¸² 2. ÀüÀÚ ÀÎÀÚ¸¦ ±â¹ÝÀ¸·Î ÇÑ 4 input AND °ÔÀÌÆ®, À¯ÀüÀÚ È¸·Î ÀåÄ¡°¡ ¾Æ´Ñ ³í¸® ȸ·ÎÀÇ Á¦ÀÛÀ» À§ÇØ ÃÑ 9°³ÀÇ

          ÇÁ·Î¸ðÅÍ¿Í Àü»ç ÀÎÀÚ ½Ö°ú Ãâ·Â ½ÅÈ£¸¦ ¾ò±â À§ÇØ 3¹øÀÇ ÀüÀÚ, ¹ø¿ª°ú Á¢Èû °úÁ¤ÀÇ ¹Ýº¹ÀÌ ÇÊ¿äÇÔ.

3. Intein °ú protein splicing

 InteinÀº ÁøÇÙ¼¼Æ÷ RNAÀÇ intron¿¡ ´ëÀÀÇÏ´Â ´Ü¹éÁú·Î, ÁøÇÙ ¼¼Æ÷, ¿øÇÙ¼¼Æ÷ ¹× °í ¼¼±Õ¿¡¼­ ¹ß°ßµÇ°í ÀÖÀ¸¸ç, ÃÖ±Ù±îÁö 500 ¿©Á¾ ÀÌ»ó ¹ß°ßµÇ°í ÀÖ´Ù (http://tools.neb.com/inbase/). Protein splicingÀº inteinÀ» °¡Áø ´Ü¹éÁúÀÌ °Þ´Â ÀÚ¹ßÀû ¹ÝÀÀÀ¸·Î, ´Ü¹éÁúÀÇ Á¢Èû °úÁ¤ ÀÌÈÄ¿¡ inteinÀÇ N-°ú C-terminal¿¡ ÀÎÁ¢ÇÑ extein (inteinÀÌ ºÐ¸®µÈ ÈÄ ÀÜ·ùÇÏ´Â ¼º¼÷ÇÑ ´Ü¹éÁú) ÀÇ peptide °áÇÕÀÇ Àý´Ü°ú Á¢ÇÕ °úÁ¤À» ÅëÇØ, intein°ú N-°ú C-exteinÀÌ peptide bond·Î °áÇÕµÈ ¼º¼÷ÇÑ µÎ °³ÀÇ ´Ü¹éÁú ºÐ¸® »ý¼ºµÇ´Â °úÁ¤À» ¸»ÇÑ´Ù[7]. InteinÀÇ ÀϹÝÀûÀÎ protein splicingÀº 4 ´Ü°è °úÁ¤À¸·Î ÀϾ¸ç, ù ¹ø° ´Ü°è¿¡¼­ intein°ú N-extein »çÀÌÀÇ peptide bond°¡ inteinÀÇ N-terminal¿¡ Á¸ÀçÇÏ´Â cysteine ¶Ç´Â serine ÀܱâÀÇ Ä£ÇÙ¼º °ø°ÝÀ» ¹Þ¾Æ thioester ¶Ç´Â ester ÀüȯÀÌ ÀϾ´Ù. ±× ÈÄ trans-esterificationÀ» ÅëÇÏ¿© N-exteinÀÌ N-inteinÀÇ Ã¹ ¹ø° Àܱ⿡¼­ C-intein (ÁÖ·Î cystein, serine ¶Ç´Â threonine) ÀÇ Ã¹ ¹ø° Àܱâ·Î À̵¿ÇÑ´Ù. ÀÌ °úÁ¤¿¡¼­ N°ú C extein°ú inteinÀÇ C-¸»´ÜÀÌ °áÇÕµÈ ÇüÅ°¡ µÇ¸ç N-exteinÀÌ ester °áÇÕÀ» ÅëÇØ °ç°¡Áö¸¦ Çü¼ºÇÏ°Ô µÈ´Ù. ±× ÈÄ N-extein°ú C-exteinÀ» ¿¬°áÇÏ´Â ester ÀÛ¿ë±â°¡ inteinÀÇ G motifÀÇ º¸Á¸ ¼­¿­ÀÎ asparagine ÀܱâÀÇ cyclization ¿¡ ÀÇÇØ ²÷¾îÁö¸ç, extein°£ÀÇ ester °áÇÕÀÌ À¯ÁöµÈ ÇüÅ·Πintein°ú ºÐ¸®µÇ¸ç, ºÐ¸®µÈ inteinÀÇ C-terminal¿¡´Â aminosuccinimide°¡ Çü¼ºµÈ´Ù. ¸¶Áö¸· ´Ü°è¿¡¼­ N °ú C-exteinÀ» ¿¬°áÇÏ°í ÀÖ´Â ester bond´Â O-N ¶Ç´Â S-N acyl Àç¹è¿­À» ÅëÇÏ¿© º»·¡ÀÇ peptide °áÇÕÀÌ Çü¼ºµÇ¸ç, inteinÀÇ C-terminal¿¡ Çü¼ºµÈ aminosuccinimide ´Â ÀÚ¹ßÀûÀÎ ¼öÈ­¸¦ ÅëÇØ ÀϹÝÀûÀÎ ´Ü¹éÁúÀÇ C-¸»´Ü ÇüÅ·Πµ¹¾Æ°¡ ¿ÂÀüÇÑ ÇüÅÂÀÇ µÎ °³ÀÇ ´Ü¹éÁú·Î ºÐ¸® µÈ´Ù (ÂüÁ¶: http://tools.neb.com/inbase/proteinSplicing.swf ¿¡¼­ Ç÷¡½Ã·Î protein splicing °úÁ¤À» º¼ ¼ö ÀÖ´Ù).

 

 ±×¸² 3. Intein °ú protein splicing. A; protein splicing°ú °ü·ÃµÈ 4°³ÀÇ º¸Á¸ ¿µ¿ªÀÌ ºÓÀº ¾ËÆĺª (A, B, F, G)·Î Ç¥½ÃµÊ. B; Synechocystis sp. PCC 6803À¸·ÎºÎÅÍ À¯·¡ÇÑ Ssp DnaB inteinÀÇ 3Â÷ ±¸Á¶ (PDB ID:1MI8)·Î °í½¿µµÄ¡ (Hedgehog) °¡ ¸öÀ» ¸»°í ÀÖ´Â ¸ð¾çÀÓ. InteinÀº ´Ü¹éÁúÀÇ ÀÏÂ÷ ¼­¿­ÀÇ Â÷ÀÌ¿¡µµ ºÒ±¸ÇÏ°í ÀÌ¿Í À¯»çÇÑ 3Â÷ ±¸Á¶¸¦ °®°í ÀÖÀ½ , C; Cis splicing°ú split inteinÀÇ trans splicingÀÇ ¸ð½ÄµµÀÓ

InteinÀÇ protein splicingÀº ÇϳªÀÇ ¹Ì¼º¼÷ ´Ü¹éÁú¿¡¼­ ÀϾ´Â cis splicing¿Ü¿¡ µÎ °³ÀÇ ¹Ì¼º¼÷ ´Ü¹éÁú »çÀÌ¿¡¼­ ÀϾ´Â trans splicingÀ¸·Î ±¸ºÐµÈ´Ù(±×¸² 3C). Trans splicingÀÌ ÀϾ´Â trans inteinÀº ÀÚ¿¬ÀûÀ¸·Î Á¸ÀçÇϱ⵵ ÇÏÁö¸¸, large intein¿¡¼­ protein splicing°ú °ü·ÃµÇÁö ¾ÊÀº DOD domain (±×¸² 3A) À» Á¦°ÅÇÏ´Â ¹æ¹ý ¶Ç´Â mini-inteinÀÇ linker ¿µ¿ªÀ» Àý´ÜÇÏ´Â ´Ü¹éÁú °øÇÐÀû ±â¹ýÀ» ÅëÇÏ¿© ÀΰøÀûÀ¸·Î Á¦À۵DZ⵵ ÇÑ´Ù. »Ó¸¸ ¾Æ´Ï¶ó ÆéŸÀÌµå °áÇÕÀ» inteinÀÇ ¾ç ¸»´ÜÀÌ ¾Æ´Ñ ÇÑÂÊ¿¡¼­¸¸ ÀϾµµ·Ï º¯ÇüÇÑ °Íµé ¶ÇÇÑ Á¸ÀçÇÑ´Ù. InteinÀÇ cis- ¿Í trans-splicingÀº »ý¸í °øÇÐ ºÐ¾ß¿¡¼­ ¿©·¯ °¡Áö ¹æ¹ýÀ¸·Î È°¿ëµÇ°í ÀÖ´Ù.

4. InteinÀÇ È°¿ë

Protein splicing, N ¶Ç´Â C ¸»´Ü ±ÙóÀÇ ÆéŸÀÌµå °áÇÕÀÇ Àý´Ü ´É·ÂÀ» ºñ·ÔÇÏ¿©, µÎ °³ÀÇ ´Ü¹éÁú »çÀÌ¿¡¼­ ÀϾ´Â trans splicingÀº »ý¹° °øÇÐ ºÐ¾ß¿¡¼­ ´Ù¾çÇÏ°Ô È°¿ëµÇ°í ÀÖ´Ù. À̵éÀ» °£·«ÇÏ°Ô ¼Ò°³ÇÏ¸é ´ÙÀ½°ú °°´Ù. InteinÀÇ °£´ÜÇÑ »ý¸í°øÇÐÀû È°¿ëºÐ¾ß Áß Çϳª´Â º¯¼º¿¡ ´ëÇÑ ³»¼ºÀ» Áõ°¡½ÃÅ°±â À§ÇÑ Àü·« Áß Çϳª·Î Á¾Á¾ È°¿ëµÇ°í Àִ ȯÇüÈ­¿¡¼­ ã¾Æ º¼ ¼ö ÀÖ´Ù. Protein splicingÀ» ÀÌ¿ëÇÑ ´Ü¹éÁúÀÇ È¯¿µÈ­´Â ´ë»óÀÌ µÇ´Â ´Ü¹éÁú ¶Ç´Â ÆéŸÀ̵åÀÇ N °ú C ¸»´Ü¿¡ trans inteinÀÇ N°ú C ºÎºÐÀ» À¶ÇÕ½ÃÄÑ ¹ßÇö ½ÃÅ°´Â °Í(IC-Protein-IN¶Ç´Â IN-protein-IC)À¸·Î °£´ÜÇÏ°Ô ÀÌ·ê ¼ö ÀÖ´Ù[8, 9]. ¶ÇÇÑ ¹Ì¼º¼÷µÈ ´Ü¹éÁú(±â´ÉÀÌ ¾ø´Â ´Ü¹éÁú)ÀÌ inteinÀÇ ºÐ¸® ÈÄ ¼º¼÷ÇÑ ´Ü¹éÁú(±â´ÉÀÇ È¸º¹)·Î ÀüȯµÇ´Â Çö»óÀ» ÀÌ¿ëÇØ, ¼¼Æ÷³» µ¶¼ºÀ» °¡Á® in vivo¿¡¼­ »ý»êÀÌ ¾î·Á¿î µ¶¼º ´Ü¹éÁú¿¡ inteinÀ» in-frame fusion ÇÏ¿© ºñµ¶¼º ´Ü¹éÁú·Î ÀüȯÇØ ¹ßÇöÇÏ´Â ¹æ¹ýÀ» ÅëÇØ °ú»ý»êÇÏ´Â °øÁ¤¿¡µµ È°¿ëµÇ¾ú´Ù[10]. Protein splicing °úÁ¤¿¡¼­ inteinÀÇ N °ú C ¸»´Ü¿¡ ÀÎÁ¢ÇÑ ÆéŸÀÌµå °áÇÕÀ» Àý´ÜÇϴ Ư¼ºÀ» È°¿ëÇØ protease·Î ÀÌ¿ëÇÑ º¸°í°¡ ÀÖ´Ù[11]. ƯÈ÷ ±âÁ¸ÀÇ proteaseÀÇ °æ¿ì ÀÎ½Ä ¼­¿­ÀÌ Á¸ÀçÇÏ´Â ¿µ¿ª ±ÙóÀÇ 3Â÷ ±¸Á¶¿¡ ¿µÇâÀ» ¹Þ±â ¶§¹®¿¡ ´ë»ó ´Ü¹éÁú¿¡ µû¶ó Àý´Ü È¿À² ¹× ƯÀ̼º¿¡ Â÷ÀÌ°¡ ³ªÅ¸³ª´Â °Í°ú ´Þ¸®, intein proteaseÀÇ °æ¿ì ´ë»ó ´Ü¹éÁúÀÌ ¾Æ´Ñ inteinÀÇ N°ú C ¿µ¿ªÀÇ 3Â÷ ±¸Á¶Àû »óº¸¼º¿¡ ±Ù°ÅÇÏ¿© ´ë»ó ´Ü¹éÁúÀ» Àý´ÜÇϱ⠶§¹®¿¡ ºñ±³Àû ³ôÀº ƯÀ̼ºÀ» À¯ÁöÇÒ ¼ö ÀÖ´Ù´Â ÀåÁ¡ÀÌ ÀÖ´Ù. ÀÌ·¯ÇÑ ±¸Á¶Àû »óº¸¼º°ú inteinÀÇ N ¶Ç´Â C ¸»´Ü¸¸À» ƯÀÌÀûÀ¸·Î Àý´ÜÇÒ ¼ö Àִ Ư¼ºÀº ´Ü¹éÁú ºÐ¸® Á¤Á¦¸¦ À§ÇØ È°¿ëµÇ±âµµ ÇÑ´Ù. InteinÀ» ÀÌ¿ëÇÑ ´Ü¹éÁúÀÇ Á¤Á¦ °úÁ¤Àº ´ÙÀ½°ú °°´Ù. Trans inteinÀÇ N ¶Ç´Â C ¿µ¿ª¿¡ affinity tag (°¡Àå ¸¹ÀÌ È°¿ëµÇ´Â ¿¹´Â Maltose binding domain ¶Ç´Â Chitin binding domain ÀÌ´Ù.)À» À¶ÇÕÇÏ°í, ´Ù¸¥ ÇÑÂÊ¿¡´Â ´ë»ó ´Ü¹éÁúÀ» À¶ÇÕÇÏ¿© °¢°¢À» µ¶¸³ÀûÀ¸·Î ¹ßÇö½ÃŲ´Ù. Affinity tagÀÌ À¶ÇÕµÈ ºÎºÐÀ» ÀûÀýÇÑ column ¶Ç´Â resin¿¡ °áÇÕ½ÃŲ µÚ, ´ë»ó ´Ü¹éÁúÀ» Èê·Áº¸³»¸é trans inteinÀÇ N°ú C ¿µ¿ªÀÌ »óÈ£ÀÛ¿ëÇÏ¿© ´ë»ó ´Ü¹éÁú°úÀÇ ÆéƼµå °áÇÕÀÌ ²÷¾î ´Ü¹éÁúÀ» tagÀÌ ¾ø´Â ÇüÅ·ΠÁ¤Á¦ ÇÒ ¼ö ÀÖ´Ù[12]. ÀÌ·¯ÇÑ ¹æ¹ýÀº Á¤Á¦ ÈÄ, affinity tagÀÇ ºÐ¸®¸¦ À§ÇÑ Ãß°¡ÀûÀÎ °úÁ¤ÀÌ ÇÊ¿ä ¾ø´Â ÀåÁ¡À» °®´Â´Ù.

ÀÌ ¿Ü inteinÀÌ °¡Àå ³Î¸® È°¿ëµÇ°í ÀÖ´Â ºÐ¾ß´Â expressed protein ligation (EPL)À¸·Î, ¿ë¾î¿¡¼­ ¾Ë ¼ö ÀÖµíÀÌ ¹ø¿ª°ú Á¢Èû °úÁ¤ÀÌ ³¡³­ ´Ü¹éÁú ¶Ç´Â ÆéŸÀ̵åµéÀ» °áÇÕ½ÃÅ°´Â ºÐ¾ß ÀÌ´Ù. EPLÀº ´Ü¹éÁúÀÇ ÀλêÈ­, lipidation, ´çÈ­, biotinylation, ubiquitination, µ¿À§ ¿ø¼Ò Ç¥Áö»Ó¸¸ ¾Æ´Ï¶ó ºñÀÚ¿¬ÀûÀÎ ¾Æ¹Ì³ë»ê ¿¹¸¦ µé¾î Çü±¤ÀÌ Ç¥ÁöµÇ°Å³ª È­ÇÐÀûÀ¸·Î º¯ÇüµÈ ¾Æ¹Ì³ë»êÀ» °®´Â ÆéŸÀ̵带 Á¢ÇÕÇÒ ¶§ ÀÌ¿ëµÇ°í ÀÖ´Ù[13]. ÀÌ ±â¼úÀº ƯÈ÷ »ì¾ÆÀÖ´Â ¼¼Æ÷ Ç¥¸é ¶Ç´Â ¼¼Æ÷³» Á¸ÀçÇÏ´Â ´Ü¹éÁúÀ» ƯÀÌÀûÀ¸·Î Ç¥ÁöÇÒ ¶§ À¯¿ëÇÏ°Ô È°¿ëÇÒ ¼ö ÀÖ´Ù. ±× ¿¹·Î, Chinese hamster ovary (CHO) cell Ç¥¸é¿¡ ÀÖ´Â human transferrin receptor¸¦ Ssp GyrB split inteinÀ» ÀÌ¿ëÇÏ¿© 5-carboxy-fluoresceinÀ¸·Î Çü±¤ Ç¥Áö ÇÑ º¸°í°¡ ÀÖ´Ù. ¶ÇÇÑ Npu DnaE inteinÀÇ C ¿µ¿ªÀ» ¸·´Ü¹éÁú°ú À¶ÇÕÇÏ°í enhanced GFP (eGFP)¸¦ N ¿µ¿ª°ú À¶ÇÕÇÑ µÎ ´Ü¹éÁúÀ» ´ëÀå±Õ¿¡¼­ µ¿½Ã ¹ßÇö½ÃÅ´À¸·Î¼­, eGFP¸¦ transmembrane ¶Ç´Â GPI-anchored protein¿¡ Ç¥Áö¸¦ ÇÑ ¿¹ µîÀÌ ÀÖ´Ù[14, 15].      

 

5. InteinÀ» È°¿ëÇÑ À¯ÀüÀÚ È¸·Î ºÎÇ° °³¹ß µ¿Çâ

 ±â´ÉÀÌ ¾ø´Â ¹Ì¼º¼÷ ´Ü¹éÁúÀ» ±â´ÉÀ» °®´Â ¼º¼÷ÇÑ ´Ü¹éÁú·ÎÀÇ Àüȯ½ÃÅ°´Â inteinÀ» ´ë»ó ´Ü¹éÁú¿¡ Àû¿ëÇϸé À¯ÀüÀÚ È¸·ÎÀÇ ½ºÀ§Ä¡¿Í °°Àº ±â´ÉÀ» ¼öÇà ÇÒ ¼ö ÀÖ´Â ºÎÇ°À» Á¦ÀÛÇÒ ¼ö ÀÖÀ» °ÍÀÌ´Ù. ÀÌ·¸°Ô Á¦ÀÛÇÑ ½ºÀ§Ä¡´Â Àü»ç ÀÎÀÚÀÇ up/down (»ýü ȸ·Î°¡ °®´Â scout ±â´É ¶Ç´Â ºü¸¥ ¹ÝÀÀÀ» À§ÇØ ÀÏÁ¤ ¼öÁØ ÀÌ»ó Á¸ÀçÇؾßÇϱ⠶§¹®¿¡ ¹ß»ýÇϴ Ư¼º) ¹æ½ÄÀÇ ½ºÀ§Ä¡°¡ ¾Æ´Ñ on/offÀÇ ÁøÁ¤ÇÑ ½ºÀ§Ä¡·ÎÀÇ È°¿ëÀÌ °¡´ÉÇÏ´Ù. ÀÌ ¸ñÀûÀ» ´Þ¼ºÇϱâ À§Çؼ­´Â inteinÀÇ protein splicingÀÇ Á¶ÀýÀÌ ÀüÁ¦ µÇ¾î¾ß ÇÑ´Ù(À̸¦ conditional protein splicing; CPS¶ó°í ÇÑ´Ù). °¡Àå ¸ÕÀú ½ÃµµµÈ CPS´Â Sce VMA (Saccharomyces cerevisiaeÀÇ large intein)ÀÇ DOD domainÀ» Á¦°ÅÇÏ¿© Á¦ÀÛÇÑ split inteinÀÇ N°ú C¿µ¿ªÀ» rapamycin binding domainÀÎ FKBP12 ¿Í FRB¿¡ °¢°¢ À¶ÇÕÇÔÀ¸·Î½á, rapamycinÀÌ Á¸Àç´Â ȯ°æ¿¡¼­ protein splicingÀÌ ÀϾµµ·Ï ÇÑ °ÍÀÌ´Ù [16, 17] (±×¸² 4A). ÀÌ ±â¼úÀº Drosophila melanogaster¿¡ Àû¿ëÇÏ¿© ¼¼Æ÷³» fire fly luciferaseÀÇ È°¼ºÀ» Á¶ÀýÇϴµ¥ È°¿ëµÇ¾ú´Ù. ¾Õ¼­ÀÇ ¿¹°¡ rapamycin¿¡ ÀÇÇØ proteinÀÌ splicingÀÌ À¯µµµÇ´Â °Í°ú ¹Ý´ë·Î, µ¹¿¬º¯ÀÌ FKBP12¸¦ ÀÌ¿ëÇØ rapamycinÀÌ Á¸ÀçÇÒ ¶§ protein splicingÀÌ ¾ïÁ¦µÇµµ·Ï ¸¸µé°Å³ª [18], FKBP12 ¿Í FRB¸¦ antiparallel coiled-coli·Î ġȯÇÏ¿© ÀÌµé °£¿¡ »óÈ£ÀÛ¿ëÀ¸·Î protein splicingÀÌ ÀϾµµ·Ï Á¦À۵DZ⵵ ÇÏ¿´´Ù [19]. Trans splicing »Ó¸¸ ¾Æ´Ï¶ó, cis splicing¸¦ È°¿ëÇÏ¿© ÇϳªÀÇ ´Ü¹éÁúÀ» È°¿ëÇÑ ½ºÀ§Ä¡ ¿ª½Ã Á¦ÀÛµÈ ¿¹ °¡ÀÖ´Ù. Mtu RecA (Mycobactrium tuberculosis·ÎºÎÅÍ À¯·¡ÇÑ large intein)ÀÇ DOD (homing endonuclease domain)À» human estrogen receptorÀÇ ligand binding domainÀ¸·Î ġȯÇÔÀ¸·Î½á 4-hydroxytamoxifen (4HT)¿¡ ´ëÀÀÇØ protein splicingÀÌ ÀϾµµ·Ï Á¦ÀÛÇÑ ½ºÀ§Ä¡°¡ ÀÖ´Ù [20, 21] (±×¸² 4B). ÀÌ ½Ã½ºÅÛÀº ÀÌÈÄ¿¡ mammalian cell¿¡¼­ fluorescent reporter ¶Ç´Â Àü»ç ÀÎÀÚ°¡ 4HT¿¡ ÀÇÇØ ±â´ÉÀ» ȸº¹Çϵµ·Ï Çϴµ¥ Àû¿ëµÇ¾ú´Ù. »Ó¸¸ ¾Æ´Ï¶ó estrogen receptor°¡ ¾Æ´Ñ human hormone receptor ¥â·Î ġȯÇÑ ½ºÀ§Ä¡¸¦ ¥â-galactosidase ¿Í ¥â-lactamase¿¡ ÀåÂøÇØ thyroid hormoneÀÇ ³óµµ¿¡ µû¶ó °¢°¢ÀÇ ´Ü¹éÁú È°¼ºÀ» ȸº¹½ÃŲ º¸°í ¶ÇÇÑ Á¸ÀçÇÑ´Ù[22]. ƯÁ¤ ºÐÀÚ¿¡ ´ëÇÑ ½ºÀ§Ä¡ ¿Ü¿¡, ȯ°æ º¯È­¸¦ ÅëÇÑ CPS¿ª½Ã º¸°í µÇ°í ÀÖ´Ù. °í¿Â¼º ¹Ì»ý¹°¿¡¼­ ºÐ¸®ÇÑ inteinÀÇ °æ¿ì ¿Âµµ¿¡ µû¶ó protein splicingÀÇ È¿À²ÀÌ ´Þ¶óÁö´Âµ¥, À̸¦ ÀÌ¿ëÇØ È¿¸ð¿Í D. melanogaster¿¡¼­ ¿Âµµ¿¡ µû¶ó Sce VMA inteinÀÇ protein splicingÀ» Á¶ÀýÇÏ¿© Àü»çÀÎÀÚ Gal4 ¿Í Gal80ÀÇ ±â´ÉÀ» ȸº¹½ÃÅ´À¸·Î½á µÎ Àü»çÀÎÀÚÀÇ ´ë»óÀÌ µÇ´Â À¯ÀüÀÚÀÇ ¹ßÇö Á¶Àý¿¡ ÀÌ¿ëÇÏ¿´´Ù. »Ó¸¸ ¾Æ´Ï¶ó T7 RNA polymerase¿¡ CPS¸¦ Àû¿ëÇÏ¿© ¿Âµµ¿¡ µû¶ó T7 promoterÀÇ downstream¿¡ À§Ä¡ÇÑ À¯ÀüÀÚÀÇ ¹ßÇö ¾çÀ» Á¶ÀýÇÑ º¸°íµµ Á¸ÀçÇÑ´Ù[23, 24]. CPS¸¦ Àü»ç ÀÎÀÚÀÇ ±â´É ȸº¹¿¡ Àû¿ëÇÑ ÀÌ¿Í °°Àº º¸°í´Â, Àü»ç ´Ü°è¿¡¼­ À¯ÀüÀÚÀÇ ¹ßÇöÀ» ±¤¹üÀ§ÇÏ°Ô Á¶ÀýÇϴµ¥ inteinÀÌ Àû¿ëµÈ ½ºÀ§Ä¡¸¦ È°¿ëÇÒ ¼ö ÀÖÀ½À» ½Ã»çÇÑ´Ù.

 

   ±×¸² 4. Conditional protein splicing (CPS). A; cis splicingÀ» ÀÌ¿ëÇÑ CPSÀÇ ¿¹·Î large inteinÀÇ DOD domainÀ» ligand binding domainÀ¸·Î ġȯÇÏ¿©, ligand°¡ °áÇÕÇÏ¿´À» ¶§ À¯µµµÇ´Â intienÀÇ conformational change¿¡ ÀÇÇØ protein splicingÀÌ ÀϾ µÎ °³·Î ºÐ¸®µÈ ´Ü¹è¹éÁúÀÌ ±â´ÉÀ» ȸº¹ÇÔ, B; trans splicingÀ» ÀÌ¿ëÇÑ CPS·Î inteinÀÇ conformational change¸¦ À¯µµÇϱ⺸´Ù N°ú C¿µ¿ªÀÇ ±¸Á¶Àû »óº¸¼º¿¡ ÀÇÁ¸ÇÏ¿© µÎ °³·Î ºÐ¸®µÈ ´Ü¹éÁúÀÇ ±â´ÉÀ» ȸº¹½ÃÅ´.

¿Âµµ»Ó¸¸ ¾Æ´Ï¶ó photodimerization domainÀ» ÀÌ¿ëÇÏ¿© ºûÀ¸·Î ȤÀº redox potential [25] ¹× pH [26]ÀÇ º¯È­·Î protein splicingÀ» Á¶ÀýÇÑ º¸°í ¶ÇÇÑ Á¸ÀçÇϸç, ÀÌ·¯ÇÑ CPS¸¦ ±â¹ÝÀ¸·Î inteinÀ» biosensor·Î¼­ÀÇ È°¿ë ¶ÇÇÑ º¸°íµÇ°í ÀÖ´Ù. CPS¸¦ ÀÌ¿ëÇÑ °¡Àå ´Ü¼øÇÑ ÇüÅÂÀÇ biosensor´Â ´Ü¹éÁú °£ÀÇ »óÈ£ ÀÛ¿ëÀ» È®ÀÎÇÏ´Â °Í [27]¿¡¼­ºÎÅÍ DNA methylation [28], protein localization [29, 30], oxidation state [31]¹× protease activity [32]¸¦ °¨ÁöÇÏ´Â °Í¿¡ À̸£±â±îÁö ´Ù¾çÇÏ°Ô È°¿ë °¡´ÉÇÔÀÌ º¸°íµÇ¾ú´Ù.

 ¾Õ¼­ »ìÆ캻 °Í°ú °°ÀÌ inteinÀÇ protein splicingÀ» ÀÌ¿ëÇØ ½ºÀ§Ä¡¿Í biosensor¸¦ Á¦ÀÛÇÑ´Ù¸é, ÀϹÝÀûÀÎ À¯ÀüÀÚ È¸·ÎµéÀÌ È¯°æ ÀÎÀڵ鿡 ¹ÝÀÀÇϱâ À§ÇØ Àü»ç ÀÎÀÚ, À̵鿡 ´ëÀÀÇÏ´Â ÇÁ·Î¸ðÅÍ¿Í À¯ÀüÀÚ µîÀÇ ¿©·¯ ±¸¼º¹°ÀÌ ÇÊ¿äÇÑ °Í°ú ´Þ¸®, ÇϳªÀÇ ¶Ç´Â µÎ °³ÀÇ ´Ü¹éÁú·Î À¯ÀüÀÚ È¸·ÎÀÇ ±â´ÉÀ» ´ëüÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î »ý°¢µÈ´Ù.

6. °íÂû

ÇÕ¼º »ý¹°ÇÐÀÇ ±â¼úÀÌ °ú°Å À¯¿ë ´Ü¹éÁúÀÇ ´ë·® »ý»êÀ̳ª ȯ°æÀÎÀÚÀÇ °¨Áö µîÀÇ ÀÏÂ÷¿øÀûÀÎ ¸ñÇ¥¸¦ ±¸ÇöÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó, »ç¿ëÀÚ°¡ ¿øÇÏ´Â º¸´Ù º¹ÀâÇÑ ¸ñÀûÀ» ´Þ¼ºÇϱâ À§ÇÑ Àΰø ¼¼Æ÷ ȤÀº ½º¸¶Æ® ¼¼Æ÷¸¦ Á¦ÀÛÀ» ¸ñÇ¥·Î ¹ßÀüÇØ °¡°í ÀÖ´Ù. ±×·³¿¡µµ ºÒ±¸ÇÏ°í ÇöÀç±îÁö Á¦ÀÛÇÑ ´ëºÎºÐÀÇ À¯ÀüÀÚ È¸·ÎµéÀÌ ½ÇÁúÀû È°¿ëµÈ ¿¹´Â ±ØÈ÷ µå¹°´Ù. ÀÌ´Â »ý¹°ÇÐÀû ºÎÇ°ÀÌ ¿©Å¸ÀÇ °øÇÐ(Àü±â, ÀüÀÚ, È­ÇÐ µî)¿¡¼­ È°¿ëµÇ´Â °Í°ú ´Þ¸® ºÎÇ°ÀÇ Á¶ÇÕ °á°ú¸¦ ºÐ¸íÇÏ°Ô ¿¹ÃøÇϱ⠾î·Æ±â ¶§¹®À̶ó »ý°¢µÈ´Ù. À̸¦ ±Øº¹Çϱâ À§ÇÑ »ý¹°ÇÐÀû ºÎÇ°ÀÇ µ¶¸³¼º°ú Á¶ÀÛ¼ºÀ» È®º¸¸¦ À§ÇØ ¸¹Àº ¿¬±¸ÀÚµéÀÌ ³ë·ÂÇÏ°í ÀÖ´Ù. ±×·¯³ª À¯ÀüÀÚ È¸·Î ¶Ç´Â À̵éÀÇ À¯±âÀûÀÎ ¿¬°á°ú ³í¸® ¿¬»êÀ» À§ÇÑ ³í¸® ȸ·Î¸¦ À§ÇÑ ºÎÇ° °³¹ßÀÌ Àü»ç ÀÎÀÚ¸¦ È°¿ëÇÏ´Â °Í¿¡ ÁýÁß µÇ°í ÀÖ´Ù. ÀÌ·¯ÇÑ »óȲ¿¡¼­ ¾Õ¼­ »ìÆ캻 °Í°ú °°ÀÌ ´Ù¾çÇÑ È°¿ë¼º°ú ´õºÒ¾î Çϳª ¶Ç´Â µÎ °³ÀÇ ´Ü¹éÁú·Î ½ºÀ§Ä¡¿Í biosensor ±â´ÉÀÇ ¼öÇàÀÌ °¡´ÉÇÑ inteinÀº À¯ÀüÀÚ È¸·ÎÀÇ ºÎÇ° °³¹ß¿¡ ÀÖ¾î ¸Å¿ì ¸Å·ÂÀûÀÎ scaffold°¡ µÉ °ÍÀ̶ó »ý°¢µÈ´Ù.

 

7. Âü°í ¹®Çå

[1] C.A. Kerfeld, S. Heinhorst, and G.C. Cannon, Bacterial microcompartments. Annu Rev Microbiol 64 (2010) 391-408.

[2] Bradley R. Parry, Ivan V. Surovtsev, Matthew T. Cabeen, Corey S. O¡¯Hern, Eric R. Dufresne, and C. Jacobs-Wagner, The Bacterial Cytoplasm Has Glass-like Properties and Is Fluidized by Metabolic Activity. Cell 156 (2014) 183-194.

[3] T.S. Gardner, C.R. Cantor, and J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature 403 (2000) 339-42.

[4] M.R. Bennett, and J. Hasty, Overpowering the component problem. Nat Biotechnol 27 (2009) 450-1.

[5] B. Wang, R.I. Kitney, N. Joly, and M. Buck, Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2 (2011) 508.

[6] M. Folcher, M. Xie, A. Spinnler, and M. Fussenegger, Synthetic mammalian trigger-controlled bipartite transcription factors. Nucleic Acids Res 41 (2013) e134.

[7] H. Paulus, Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem 69 (2000) 447-96.

[8] T.C. Evans, J. Benner, and M.-Q. Xu, The Cyclization and Polymerization of Bacterially Expressed Proteins Using Modified Self-splicing Inteins. Journal of Biological Chemistry 274 (1999) 18359-18363.

[9] J.A. Camarero, and T.W. Muir, Biosynthesis of a Head-to-Tail Cyclized Protein with Improved Biological Activity. Journal of the American Chemical Society 121 (1999) 5597-5598.

[10] J. Miao, W. Wu, T. Spielmann, M. Belfort, V. Derbyshire, and G. Belfort, Single-step affinity purification of toxic and non-toxic proteins on a fluidics platform. Lab on a Chip 5 (2005) 248-253.

[11] G. Volkmann, V. Volkmann, and X.-Q. Liu, Site-specific protein cleavage in vivo by an intein-derived protease. FEBS Lett 586 (2012) 79-84.

[12] D. Guan, M. Ramirez, and Z. Chen, Split intein mediated ultra-rapid purification of tagless protein (SIRP). Biotechnology and Bioengineering 110 (2013) 2471-2481.

[13] T.W. Muir, D. Sondhi, and P.A. Cole, Expressed protein ligation: A general method for protein engineering. Proceedings of the National Academy of Sciences 95 (1998) 6705-6710.

[14] G. Volkmann, and X.-Q. Liu, Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein. PLoS ONE 4 (2009) e8381.

[15] T. Ando, S. Tsukiji, T. Tanaka, and T. Nagamune, Construction of a small-molecule-integrated semisynthetic split intein for in vivoprotein ligation. Chemical Communications (2007) 4995-4997.

[16] H.D. Mootz, E.S. Blum, A.B. Tyszkiewicz, and T.W. Muir, Conditional Protein Splicing: A New Tool to Control Protein Structure and Function in Vitro and in Vivo. Journal of the American Chemical Society 125 (2003) 10561-10569.

[17] H.D. Mootz, and T.W. Muir, Protein Splicing Triggered by a Small Molecule. Journal of the American Chemical Society 124 (2002) 9044-9045.

[18] E.C. Schwartz, L. Saez, M.W. Young, and T.W. Muir, Post-translational enzyme activation in an animal via optimized conditional protein splicing. Nat Chem Biol 3 (2007) 50-4.

[19] D.F. Selgrade, J.J. Lohmueller, F. Lienert, and P.A. Silver, Protein Scaffold-Activated Protein Trans-Splicing in Mammalian Cells. Journal of the American Chemical Society 135 (2013) 7713-7719.

[20] S.H. Peck, I. Chen, and D.R. Liu, Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem Biol 18 (2011) 619-30.

[21] A.R. Buskirk, Y.C. Ong, Z.J. Gartner, and D.R. Liu, Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A 101 (2004) 10505-10.

[22] G. Skretas, and D.W. Wood, Regulation of protein activity with small-molecule-controlled inteins. Protein Science 14 (2005) 523-532.

[23] M.P. Zeidler, C. Tan, Y. Bellaiche, S. Cherry, S. Hader, U. Gayko, and N. Perrimon, Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat Biotechnol 22 (2004) 871-876.

[24] R.B. Liang, X.P. Liu, J.H. Liu, Q.S. Ren, P.J. Liang, Z.X. Lin, and X.M. Xie, A T7-expression system under temperature control could create temperature-sensitive phenotype of target gene in Escherichia coli. Journal of Microbiological Methods 68 (2007) 497-506.

[25] L. Berrade, Y. Kwon, and J.A. Camarero, Photomodulation of Protein Trans-Splicing Through Backbone Photocaging of the DnaE Split Intein. Chembiochem 11 (2010) 1368-1372.

[26] J.X. Shi, and T.W. Muir, Development of a tandem protein trans-splicing system based on native and engineered split inteins. Journal of the American Chemical Society 127 (2005) 6198-6206.

[27] T. Ozawa, S. Nogami, M. Sato, Y. Ohya, and Y. Umezawa, A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing. Anal Chem 72 (2000) 5151-7.

[28] X. Huang, R. Narayanaswamy, K. Fenn, S. Szpakowski, C. Sasaki, J. Costa, P. Blancafort, and P.M. Lizardi, Sequence-specific biosensors report drug-induced changes in epigenetic silencing in living cells. DNA Cell Biol 31 Suppl 1 (2012) S2-10.

[29] S.B. Kim, T. Ozawa, S. Watanabe, and Y. Umezawa, High-throughput sensing and noninvasive imaging of protein nuclear transport by using reconstitution of split Renilla luciferase. Proc Natl Acad Sci U S A 101 (2004) 11542-7.

[30] T. Ozawa, Y. Sako, M. Sato, T. Kitamura, and Y. Umezawa, A genetic approach to identifying mitochondrial proteins. Nat Biotechnol 21 (2003) 287-93.

[31] B.P. Callahan, M. Stanger, and M. Belfort, A redox trap to augment the intein toolbox. Biotechnol Bioeng 110 (2013) 1565-73.

[32] A. Kanno, Y. Yamanaka, H. Hirano, Y. Umezawa, and T. Ozawa, Cyclic luciferase for real-time sensing of caspase-3 activities in living mammals. Angew Chem Int Ed Engl 46 (2007) 7595-9.




Total:118 page:(8/4)
70 Á¤º¸ ±èÇå½Ä ÀÚ¿¬»ìÇؼ¼Æ÷¿Í Ç׾ϸ鿪ġ·á ¿¬±¸µ¿Çâ 16.08.03 10295
69 Á¤º¸ ¼ÛÀ籤 ÀÚ¿¬ÀÇ ÇÕ¼º Àü·«À» ½ÇÇè½Ç·Î ¿Å°Ü¿Â È¿¼Ò ¿¬¼Ó´Ü.. 16.07.19 7834
68 Á¤º¸ Àü»ó¿ë ¾Ï Ä¡·á¿ë Ç¥ÀûÇü ³ª³ë¾à¹°Àü´Þ½Ã½ºÅÛÀÇ °³¹ß µ¿.. 16.07.19 18014
67 Á¤º¸ ÀÌÁö¿À Àΰø ´Ü¹éÁú ³ª³ë±¸Á¶Ã¼ ÃֽŠ¿¬±¸µ¿Çâ 16.04.12 8892
66 Á¤º¸ À̴뿱 Let-7 miRNA biogenesis 16.03.31 11282
65 Á¤º¸ Á¤¿øÀÏ Class III ADH È°¼º¾ïÁ¦¸¦ ÅëÇÑ °£¼¶À¯È­ Ä¡·á±â.. 16.03.31 11819
64 Á¤º¸ ±è¹Ì¿µ ¾ÏÀüÀÌ Ä¡·áÁ¦ °³¹ßÀ» À§ÇÑ ÃֽŠ¿¬±¸ µ¿Çâ 16.03.18 8770
63 Á¤º¸ À±¿µ°É ¹ÌÅäÄܵ帮¾Æ DNA ÇÕ¼º»ý¹°ÇÐ ¿¬±¸ µ¿Çâ 16.03.07 10468
62 Á¤º¸ ÇÑ°©ÈÆ Áø±Õ¿¡¼­ ¹ß°ßµÈ »õ·Î¿î ±â´ÉÀÇ ¸ÞÆ¿ÀüÀÌÈ¿¼Òµé°ú.. 16.01.07 12071
61 Á¤º¸ ÀÌÇö¼ö È¿¼Ò¸¦ ÀÌ¿ëÇÑ Ãµ¿¬¹° À¯µµÃ¼ÀÇ ±Û¸®ÄÚ½ÇÈ­ 16.01.07 12748
60 Á¤º¸ ¹æµÎÈñ ÇÕ¼º »ý¹°ÇÐ ¿¬±¸¸¦ À§ÇÑ ±â¹Ý ±â¼ú·Î¼­ÀÇ ´Ü¼¼Æ÷.. 16.01.07 13859
59 Á¤º¸ ±è±ÙÁß À¯ÀüÀÚ ¹ßÇö°ú °ü·ÃµÈ »õ·Î¿î ³í¸®¿Í ÇÕ¼º»ý¹°ÇÐ.. 15.12.30 16697
58 Á¤º¸ ±èÈñÅà ÆéŸÀÌµå ±â¹Ý ÀÚ°¡ Á¶¸³ ±¸Á¶Ã¼ ¿¬±¸ÀÇ µ¿Çâ ¹× .. 15.12.30 11253
57 Á¤º¸ ±èÁöÇö ½Ã½ºÅÛ»ý¹°ÇÐÀÇ ÇÕ¼º»ý¹°ÇÐ Àû¿ë ¿¬±¸µ¿Çâ 15.09.10 20953
56 Á¤º¸ ±èµ¿¸³ ¹Ì»ý¹°À» ÀÌ¿ëÇÑ È­Çй°Áú »ý»ê ¿¬±¸µ¿Çâ 15.09.02 12392
55 Á¤º¸ ÀÌÁ¤°É »ýÃ˸ÅÀÇ ¾÷±×·¹À̵ùÀ» À§ÇÑ °íÁ¤È­ ¿¬±¸ µ¿Çâ 15.08.21 16222
[1] [2] [3] [4] [5] [6] [7] [8]